Skip to main content

Dynamic Multi-objective Optimization via Sliding Time Window and Parallel Computing

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12690))

Included in the following conference series:

Abstract

Tracking changing Pareto front (PF) in the objective space and Pareto set (PS) in the decision space is an important task in dynamic multi-objective optimization (DMO). Similarly, maintaining population diversity and reusing previous evolutionary information are useful to explore promising regions and to find high-quality solutions quickly in time-varying environments. To this end, a sliding time window based on parallel computing (STW-PC) is introduced in the present study. In the STW-PC, obtained time-sequence solution sets aim to preserve the diversity and facilitate a fast convergence since problems in successive time/environments are usually related. The parallel computing method is also employed to reduce the computational time. The STW-PC is incorporated into a multi-objective evolutionary algorithm and is compared with two competitors on 12 dynamic multi-objective optimization problems. The results show that the STW-PC can both improve the tracking performance of the selected algorithm in different degrees of changes, and significantly reduce the calculation time compared with transfer learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruz, C., González, J., Pelta, D.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft. Comput. 15(7), 1427–1448 (2011)

    Article  Google Scholar 

  2. Nguyen, S., Zhang, M., Johnston, M., et al.: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans. Evol. Comput. 18(2), 193–208 (2013)

    Article  Google Scholar 

  3. Yan, X., Cai, B., Ning, B., et al.: Moving horizon optimization of dynamic trajectory planning for high-speed train operation. IEEE Trans. Intell. Transp. Syst. 17(5), 1258–1270 (2015)

    Article  Google Scholar 

  4. Yazici, A., Kirlik, G., Parlaktuna, O., et al.: A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints. IEEE Trans. Cybern. 44, 305–314 (2013)

    Article  Google Scholar 

  5. Karatas, M.: A dynamic multi-objective location-allocation model for search and rescue assets. Eur. J. Oper. Res. 288(2), 620–633 (2021)

    Article  MathSciNet  Google Scholar 

  6. Fan, Q., Wang, W., Yan, X.: Multi-objective differential evolution with performance-metric-based self-adaptive mutation operator for chemical and biochemical dynamic optimization problems. Appl. Soft Comput. 59, 33–44 (2017)

    Article  Google Scholar 

  7. Jiang, M., Huang, Z., Qiu, L., et al.: Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 22(4), 501–514 (2018)

    Article  Google Scholar 

  8. Tanabe, R., Ishibuchi, H.: A review of evolutionary multi-modal multi-objective optimization. IEEE Trans. Evol. Comput. 24(1), 193–200 (2019)

    Article  Google Scholar 

  9. Yan, W., Chang, J., Shao, H.: Least square SVM regression method based on sliding time window and its simulation. J. Shanghai Jiaotong Univ. 38(4), 524–526 (2004)

    Google Scholar 

  10. Fan, Q., Yan, X., Zhang, Y., et al.: A variable search space strategy based on sequential trust region determination technique. IEEE Trans. Cybern. PP, 1–3 (2019)

    Google Scholar 

  11. Helbig, M., Engelbrecht, A.: Benchmark functions for CEC 2015 special session and competition on dynamic multi-objective optimization. Technical report (2015)

    Google Scholar 

  12. Zhang, Q., Yang, S., Jiang, S., et al.: Novel prediction strategies for dynamic multi-objective optimization. IEEE Trans. Evol. Comput. 24(2), 260–274 (2019)

    Article  Google Scholar 

  13. Muruganantham, A., Tan, K., Vadakkepat, P.: Evolutionary dynamic multiobjective optimization via Kalman filter prediction. IEEE Trans. Cybern. 46(12), 2862–2873 (2015)

    Article  Google Scholar 

  14. Akrida, E., Mertzios, G., Spirakis, P., et al.: Temporal vertex cover with a sliding time window. J. Comput. Syst. Sci. 107, 108–123 (2020)

    Article  MathSciNet  Google Scholar 

  15. Ma, C., Li, W., Cao, J., et al.: Adaptive sliding window based activity recognition for assisted livings. Inf. Fusion 53, 55–65 (2020)

    Article  Google Scholar 

  16. Ferland, J., Fortin, L.: Vehicles scheduling with sliding time windows. Eur. J. Oper. Res. 38(2), 213–226 (1989)

    Article  Google Scholar 

  17. Kiviniemi, V., Vire, T., Remes, J., et al.: A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connectivity 1(4), 339–347 (2011)

    Article  Google Scholar 

  18. Fagerholt, K.: Ship scheduling with soft time windows: an optimisation based approach. Eur. J. Oper. Res. 131(3), 559–571 (2001)

    Article  MathSciNet  Google Scholar 

  19. Deb, K., Rao N., U., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_60

    Chapter  Google Scholar 

  20. Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in dynamic environments. Evol. Comput. 16(3), 385–416 (2008)

    Article  Google Scholar 

  21. Jiang, S., Kaiser, M., Wan, S., et al.: An empirical study of dynamic triobjective optimisation problems. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 1–8 (2018)

    Google Scholar 

  22. Branke, J., Kaußler, T., Smidt, C., et al.: A multi-population approach to dynamic optimization problems. In: Parmee, I.C. (ed.) Evolutionary Design and Manufacture, pp. 299–307: Springer, London (2000). https://doi.org/10.1007/978-1-4471-0519-0_24

  23. Liu, R., Li, J., Mu, C., et al.: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization. Eur. J. Oper. Res. 261(3), 1028–1051 (2017)

    Article  MathSciNet  Google Scholar 

  24. Branke, S.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the 1999 Conference on Evolutionary Computation, pp. 1875–1882 (1999)

    Google Scholar 

  25. Goh, C., Tan, K.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2008)

    Google Scholar 

  26. Stroud, P.: Kalman-extended genetic algorithm for search in nonstationary environments with noisy fitness evaluations. IEEE Trans. Evol. Comput. 5(1), 66–77 (2001)

    Article  Google Scholar 

  27. Rossi, C., Abderrahim, M., Díaz, J.: Tracking moving optima using Kalman-based predictions. Evol. Comput. 16(1), 1–30 (2008)

    Article  Google Scholar 

  28. Zhou, A., Jin, Y., Zhang, Q.: A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans. Cybern. 44(1), 40–53 (2013)

    Article  Google Scholar 

  29. Ruan, G., Minku, L., Menzel, S., et al.: When and how to transfer knowledge in dynamic multi-objective optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 2034–2041 (2019)

    Google Scholar 

  30. Wang, F., Li, Y., Liao, F., Yan, H.: An ensemble learning based prediction strategy for dynamic multi-objective optimization. Appl. Soft Comput. 96, 106592 (2020)

    Article  Google Scholar 

  31. Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans. Evol. Comput. 12(1), 41–63 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Shanghai Science and Technology Innovation Action Plan (18550720100, 19040501600), the National Nature Science Foundation of China (No. 61603244).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Q., Wang, Y., Ersoy, O.K., Li, N., Chu, Z. (2021). Dynamic Multi-objective Optimization via Sliding Time Window and Parallel Computing. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science(), vol 12690. Springer, Cham. https://doi.org/10.1007/978-3-030-78811-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78811-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78810-0

  • Online ISBN: 978-3-030-78811-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics