Skip to main content

Community Detection Algorithms for Cultural and Natural Heritage Data in Social Networks

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops (AIAI 2021)

Abstract

In social network analysis, it is crucial to discover a community through the retrospective decomposition of a large social graph into easily interpretable subgraphs. Four major community discovery algorithms, namely the Breadth-First Search, the Louvain, the MaxToMin, and the Propinquity Dynamics, are implemented. Their correctness was functionally evaluated in the four most widely used graphs with vastly different characteristics and a dataset retrieved from Twitter regarding cultural and natural heritage data because this platform reflects public perception about historical events through means such as advanced storytelling in users timelines. The primary finding was that the Propinquity Dynamics algorithm outperforms the other algorithms in terms of NMI for most graphs. In contrast, this algorithm with the Louvain performs almost the same regarding modularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exper. 2008(10), P10008 (2008)

    Article  Google Scholar 

  2. Chen, Y., Zhao, P., Li, P., Zhang, K., Zhang, J.: Finding communities by their centers. Sci. Rep. 6(1), 1–8 (2016)

    Article  Google Scholar 

  3. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Google Scholar 

  4. Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: a survey. Soc. Netw. Analy. Min. 8(1), 13 (2018)

    Article  Google Scholar 

  5. Drakopoulos, G., Gourgaris, P., Kanavos, A.: Graph communities in Neo4j. Evolving Syst. 11(3), 397–407 (2020)

    Article  Google Scholar 

  6. Drakopoulos, G., Kanavos, A., Makris, C., Megalooikonomou, V.: On converting community detection algorithms for fuzzy graphs in Neo4j. In: International Workshop on Combinations of Intelligent Methods and Applications (2015)

    Google Scholar 

  7. Drakopoulos, G., Kanavos, A., Makris, C., Megalooikonomou, V.: Comparing algorithmic principles for fuzzy graph communities over Neo4j. In: Hatzilygeroudis, I., Palade, V., Prentzas, J. (eds.) Advances in Combining Intelligent Methods. ISRL, vol. 116, pp. 47–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46200-4_3

    Chapter  Google Scholar 

  8. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)

    Article  MathSciNet  Google Scholar 

  9. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–160 (2000)

    Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  12. Jia, G., et al.: Community detection in social and biological networks using differential evolution. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 71–85. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_6

    Chapter  Google Scholar 

  13. Kafeza, E., Kanavos, A., Makris, C., Chiu, D.K.W.: Identifying personality-based communities in social networks. Adv. Conceptual Model. 8697, 7–13 (2013)

    Article  Google Scholar 

  14. Kafeza, E., Kanavos, A., Makris, C., Pispirigos, G., Vikatos, P.: T-PCCE: twitter personality based communicative communities extraction system for big data. IEEE Trans. Knowl. Data Eng. 32(8), 1625–1638 (2020)

    Article  Google Scholar 

  15. Kafeza, E., Kanavos, A., Makris, C., Vikatos, P.: T-PICE: twitter personality based influential communities extraction system. In: IEEE International Congress on Big Data, pp. 212–219 (2014)

    Google Scholar 

  16. Kanavos, A., Drakopoulos, G., Tsakalidis, A.K.: Graph community discovery algorithms in neo4j with a regularization-based evaluation metric. In: 13th International Conference on Web Information Systems and Technologies (WEBIST), pp. 403–410 (2017)

    Google Scholar 

  17. Kanavos, A., Perikos, I.: Towards detecting emotional communities in twitter. In: 9th IEEE International Conference on Research Challenges in Information Science (RCIS), pp. 524–525 (2015)

    Google Scholar 

  18. Kanavos, A., Perikos, I., Hatzilygeroudis, I., Tsakalidis, A.K.: Integrating user’s emotional behavior for community detection in social networks. In: 12th International Conference on Web Information Systems and Technologies (WEBIST), pp. 355–362 (2016)

    Google Scholar 

  19. Kanavos, A., Perikos, I., Hatzilygeroudis, I., Tsakalidis, A.K.: Emotional community detection in social networks. Comput. Electr. Eng. 65, 449–460 (2018)

    Article  Google Scholar 

  20. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Google Scholar 

  21. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 049902 (2009)

    Google Scholar 

  22. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)

    Google Scholar 

  23. Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: 19th International Conference on World Wide Web (WWW), pp. 631–640 (2010)

    Google Scholar 

  24. Mylonas, P., Wallace, M., Kollias, S.: Using k-nearest neighbor and feature selection as an improvement to hierarchical clustering. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 191–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24674-9_21

    Chapter  MATH  Google Scholar 

  25. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Google Scholar 

  26. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  27. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems (NIPS), pp. 849–856 (2001)

    Google Scholar 

  28. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report (1999)

    Google Scholar 

  29. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Discov. 24(3), 515–554 (2012)

    Article  Google Scholar 

  30. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_107

    Chapter  Google Scholar 

  31. Plantié, M., Crampes, M.: Survey on social community detection. In: Social Media Retrieval, pp. 65–85. Computer Communications and Networks (2013)

    Google Scholar 

  32. Porter, M.A., Onnela, J., Mucha, P.J.: Communities in networks. CoRR (2009)

    Google Scholar 

  33. Pothen, A., Simon, H.D., Liu, K.P.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  Google Scholar 

  34. Scott, J.: Social network analysis. Sociology 22(1), 109–127 (1988)

    Article  Google Scholar 

  35. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 22(8), 888–905 (2000)

    Article  Google Scholar 

  36. Vallet, D., Fernández, M., Castells, P., Mylonas, P., Avrithis, Y.: A contextual personalization approach based on ontological knowledge. In: 2nd International Workshop on Contexts and Ontologies: Theory, Practice and Applications ( C&O-2006) Collocated with the 17th European Conference on Artificial Intelligence ( ECAI-2006), vol. 210 (2006)

    Google Scholar 

  37. Yang, B., Liu, D., Liu, J.: Discovering communities from social networks: methodologies and applications. In: Handbook of Social Network Technologies and Applications, pp. 331–346 (2010)

    Google Scholar 

  38. Yin, C., Zhu, S., Chen, H., Zhang, B., David, B.: A method for community detection of complex networks based on hierarchical clustering. Int. J. Distrib. Sens. Netw. 11, 849140:1–849140:9 (2015)

    Google Scholar 

  39. Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel community detection on large networks with propinquity dynamics. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 997–1006 (2009)

    Google Scholar 

  40. Zhu, J., Chen, B., Zeng, Y.: Community detection based on modularity and k-plexes. Inf. Sci. 513, 127–142 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This research has been co-financed by the European Union and Greek national funds through the Competitiveness, Entrepreneurship and Innovation Operational Programme, under the Call “Research - Create - Innovate", project title: “Using Digital Tools and Applications for Outdoor Alternative Tourism Operators - DIMOLEON", project code: T2EDK-03168, MIS code: 5069920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kanavos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanavos, A., Trigka, M., Dritsas, E., Vonitsanos, G., Mylonas, P. (2021). Community Detection Algorithms for Cultural and Natural Heritage Data in Social Networks. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-030-79157-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79157-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79156-8

  • Online ISBN: 978-3-030-79157-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics