Abstract
In social network analysis, it is crucial to discover a community through the retrospective decomposition of a large social graph into easily interpretable subgraphs. Four major community discovery algorithms, namely the Breadth-First Search, the Louvain, the MaxToMin, and the Propinquity Dynamics, are implemented. Their correctness was functionally evaluated in the four most widely used graphs with vastly different characteristics and a dataset retrieved from Twitter regarding cultural and natural heritage data because this platform reflects public perception about historical events through means such as advanced storytelling in users timelines. The primary finding was that the Propinquity Dynamics algorithm outperforms the other algorithms in terms of NMI for most graphs. In contrast, this algorithm with the Louvain performs almost the same regarding modularity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exper. 2008(10), P10008 (2008)
Chen, Y., Zhao, P., Li, P., Zhang, K., Zhang, J.: Finding communities by their centers. Sci. Rep. 6(1), 1–8 (2016)
Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)
Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: a survey. Soc. Netw. Analy. Min. 8(1), 13 (2018)
Drakopoulos, G., Gourgaris, P., Kanavos, A.: Graph communities in Neo4j. Evolving Syst. 11(3), 397–407 (2020)
Drakopoulos, G., Kanavos, A., Makris, C., Megalooikonomou, V.: On converting community detection algorithms for fuzzy graphs in Neo4j. In: International Workshop on Combinations of Intelligent Methods and Applications (2015)
Drakopoulos, G., Kanavos, A., Makris, C., Megalooikonomou, V.: Comparing algorithmic principles for fuzzy graph communities over Neo4j. In: Hatzilygeroudis, I., Palade, V., Prentzas, J. (eds.) Advances in Combining Intelligent Methods. ISRL, vol. 116, pp. 47–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46200-4_3
Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)
Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–160 (2000)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
Jia, G., et al.: Community detection in social and biological networks using differential evolution. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 71–85. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_6
Kafeza, E., Kanavos, A., Makris, C., Chiu, D.K.W.: Identifying personality-based communities in social networks. Adv. Conceptual Model. 8697, 7–13 (2013)
Kafeza, E., Kanavos, A., Makris, C., Pispirigos, G., Vikatos, P.: T-PCCE: twitter personality based communicative communities extraction system for big data. IEEE Trans. Knowl. Data Eng. 32(8), 1625–1638 (2020)
Kafeza, E., Kanavos, A., Makris, C., Vikatos, P.: T-PICE: twitter personality based influential communities extraction system. In: IEEE International Congress on Big Data, pp. 212–219 (2014)
Kanavos, A., Drakopoulos, G., Tsakalidis, A.K.: Graph community discovery algorithms in neo4j with a regularization-based evaluation metric. In: 13th International Conference on Web Information Systems and Technologies (WEBIST), pp. 403–410 (2017)
Kanavos, A., Perikos, I.: Towards detecting emotional communities in twitter. In: 9th IEEE International Conference on Research Challenges in Information Science (RCIS), pp. 524–525 (2015)
Kanavos, A., Perikos, I., Hatzilygeroudis, I., Tsakalidis, A.K.: Integrating user’s emotional behavior for community detection in social networks. In: 12th International Conference on Web Information Systems and Technologies (WEBIST), pp. 355–362 (2016)
Kanavos, A., Perikos, I., Hatzilygeroudis, I., Tsakalidis, A.K.: Emotional community detection in social networks. Comput. Electr. Eng. 65, 449–460 (2018)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 049902 (2009)
Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)
Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: 19th International Conference on World Wide Web (WWW), pp. 631–640 (2010)
Mylonas, P., Wallace, M., Kollias, S.: Using k-nearest neighbor and feature selection as an improvement to hierarchical clustering. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 191–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24674-9_21
Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)
Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems (NIPS), pp. 849–856 (2001)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report (1999)
Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Discov. 24(3), 515–554 (2012)
Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_107
Plantié, M., Crampes, M.: Survey on social community detection. In: Social Media Retrieval, pp. 65–85. Computer Communications and Networks (2013)
Porter, M.A., Onnela, J., Mucha, P.J.: Communities in networks. CoRR (2009)
Pothen, A., Simon, H.D., Liu, K.P.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)
Scott, J.: Social network analysis. Sociology 22(1), 109–127 (1988)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 22(8), 888–905 (2000)
Vallet, D., Fernández, M., Castells, P., Mylonas, P., Avrithis, Y.: A contextual personalization approach based on ontological knowledge. In: 2nd International Workshop on Contexts and Ontologies: Theory, Practice and Applications ( C&O-2006) Collocated with the 17th European Conference on Artificial Intelligence ( ECAI-2006), vol. 210 (2006)
Yang, B., Liu, D., Liu, J.: Discovering communities from social networks: methodologies and applications. In: Handbook of Social Network Technologies and Applications, pp. 331–346 (2010)
Yin, C., Zhu, S., Chen, H., Zhang, B., David, B.: A method for community detection of complex networks based on hierarchical clustering. Int. J. Distrib. Sens. Netw. 11, 849140:1–849140:9 (2015)
Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel community detection on large networks with propinquity dynamics. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 997–1006 (2009)
Zhu, J., Chen, B., Zeng, Y.: Community detection based on modularity and k-plexes. Inf. Sci. 513, 127–142 (2020)
Acknowledgement
This research has been co-financed by the European Union and Greek national funds through the Competitiveness, Entrepreneurship and Innovation Operational Programme, under the Call “Research - Create - Innovate", project title: “Using Digital Tools and Applications for Outdoor Alternative Tourism Operators - DIMOLEON", project code: T2EDK-03168, MIS code: 5069920.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Kanavos, A., Trigka, M., Dritsas, E., Vonitsanos, G., Mylonas, P. (2021). Community Detection Algorithms for Cultural and Natural Heritage Data in Social Networks. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-030-79157-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-79157-5_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79156-8
Online ISBN: 978-3-030-79157-5
eBook Packages: Computer ScienceComputer Science (R0)