Skip to main content

Subject-Oriented Reference Model for Virtual Factory Operations Commissioning

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2021, EMMSAD 2021)

Abstract

The commissioning of manufacturing plants is considered a complex and at the same time critical phase in the life cycle of a production system, because errors and delays lead to long downtimes and cost-intensive re-work at the start of production. Optimizations and rationalisation of this phase can be implemented by employing the idea of virtual commissioning. This paper summarises conceptual approaches to virtual commissioning and concertises them with the help of subject-oriented process models. As reference models, these depict the plant design process and demonstrate the advantage of virtual commissioning in terms of time, cost, and quality. The discussion along recognised quality criteria show that the reference model is suitable for providing orientation for the people involved in the plant engineering process and that the model can be used to support the creation of company-specific models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Communication channels were not explained in Sect. 2.1 as none of them occured in the simple SID there.

  2. 2.

    In an ideal world this will not happen. However, Murphy’s colloquial law does allow the assumption that something WILL always go wrong.

  3. 3.

    This is also the case if the virtual model serves as a digital twin of the future production system and updates will be input remotely. The software update still needs to be tested.

  4. 4.

    If claimed to be the case then only in the most trivial cases and/or with huge error buffers/margins in all planning efforts.

  5. 5.

    The model can be reviewed by accessing it at [2].

References

  1. A standard for subject-oriented specification of systems. https://github.com/I2PM/Standard-Documents-for-Subject-Orientation. Accessed 16 Mar 2021

  2. Subject-oriented reference models for traditional and virtual commissioning. https://github.com/MatthesElstermann/VirtualFactoryOperationsCommisionReferenceModel. Accessed 16 Mar 2021

  3. Brökelmann, J.: Systematik der virtuellen Inbetriebnahme von automatisierten Produktionssystemen. University of Paderborn, Paderborn (2015)

    Google Scholar 

  4. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-level System Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18216-7

    Book  MATH  Google Scholar 

  5. Davis, B.: How to validate machines with virtual commissioning: Virtual commissioning begins with a vision of the desired machine behavior and sequence of operation. Plant Eng. 74(7) (2020)

    Google Scholar 

  6. Dominka, S.: Hybride Inbetriebnahme von Produktionsanlagen. Von der virtuellen zur realen Inbetriebnahme. Sierke, Göttingen (2007)

    Google Scholar 

  7. Elstermann, M., Ovtcharova, J.: Sisi in the ALPS: a simple simulation and verification approach for pass. In: Proceedings of the 10th International Conference on Subject-Oriented Business Process Management. S-BPM One 2018. Association for Computing Machinery, New York (2018)

    Google Scholar 

  8. Elstermann, M., Wolski, A.: Matching execution and modeling semantics for subject-oriented process models. In: Freitag, M., Kinra, A., Kotzab, H., Kreowski, H.J., Thoben, K.D. (eds.) Subject-Oriented Business Process Management: The Digital Workplace - Nucleus for Transformation. No. 1278 in Communications in Computer and Information Science. Springer (2020)

    Google Scholar 

  9. Eversheim, W., Koerth, D., Gentzke, J., Walenta, F., Kettner, P., Esser, H.: Integrierte Produktentwicklung. Denkabläufe, Methodeneinsatz, Zusammenarbeit. Hanser, München (2009)

    Google Scholar 

  10. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., Börger, E.: Subject-Oriented Business Process Management. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32392-8

  11. Fleischmann, A.: Distributed Systems - Software Design and Implementation. Springer, Berlin (1994). https://doi.org/10.1007/978-3-642-78612-9

    Book  MATH  Google Scholar 

  12. Gausemeier, J., Schäfer, W., Anacker, H., Bauer, F., Dziwok, S.: Einsatz semantischer technologien im entwurf mechatronischer systeme. In: Gausemeier, J., Rammig, F.J., Schäfer, W., Trächtler, A. (eds.) 8. Paderborner Workshop Entwurf mechatronischer Systeme. Verlagsschriftenreihe des Heinz Nixdorf Instituts, Paderborn, vol. 294, pp. 7–35. Heinz Nixdorf Institut, 19–20 May 2011

    Google Scholar 

  13. Hand, A.: Digital twin makes virtual commissioning a reality. Autom. World 17(1), 1 (2019)

    Google Scholar 

  14. Hoffmann, P.: On Virtual Commissioning of Manufacturing Systems - Proposal for a systematic VC simulation study methodology and a new simulation model building approach. University of Applied Sciences Hannover, Hannover (2016)

    Google Scholar 

  15. Küster, J.M., Koehler, J., Ryndina, K.: Improving business process models with reference models in business-driven development. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 35–44. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_5

    Chapter  Google Scholar 

  16. Makris, S., Michalos, G., Chryssolouris, G.: Virtual commissioning of an assembly cell with cooperating robots. Adv. Decision Sci. (2012)

    Google Scholar 

  17. Menzel, T., Stoeppler, G., Douglas, S.: Hardware-in-the-loop simulation of machine tools and manufacturing systems. Comput. Control Eng. 14, 10–15 (2005)

    Google Scholar 

  18. Mihoubi, B., Bouzouia, B., Tebani, K., Gaham, M.: Hardware in the loop simulation for product driven control of a cyber-physical manufacturing system. Prod. Eng. Res. Devel. 14(3), 329–343 (2020). https://doi.org/10.1007/s11740-020-00957-w

    Article  Google Scholar 

  19. zur Muehlen, M., Wisnosky, D., Kindrick, J.: Primitives: design guidelines and architecture for BPMN models. In: Proceedings of ACIS 2010. ACIS (2010)

    Google Scholar 

  20. Nikolakis, N., Alexopoulos, K., Xanthakis, E., Chryssolouris, G.: The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory floor. Int. J. Comput. Integr. Manuf. 32(1), 1–12 (2019)

    Article  Google Scholar 

  21. Poeschl, S., Wirth, F., Bauernhansl, T.: Strategic process planning for commissioning processes in mechanical engineering. Int. J. Prod. Res. 57(21), 6727–6739 (2019)

    Article  Google Scholar 

  22. La. Rosa, M., Gottschalk, F., Dumas, M., van der Aalst, W.M.P.: Linking domain models and process models for reference model configuration. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp. 417–430. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78238-4_43

    Chapter  Google Scholar 

  23. Slansky, D.: Virtual commissioning evolves into model-driven digital twin. Autom. World 18(8), 41 (2020)

    Google Scholar 

  24. Spitzweg, M.: Methode und Konzept für den Einsatz eines physikalischen Modells in der Entwicklung von Produktionsanlagen. Uhl, München (2009)

    Google Scholar 

  25. Taylor, C., Bandara, W.: Defining the quality of business process reference models. In: Lethbridge, N. (ed.) Proceedings of 14th Australasian Conference on Information Systems (2003)

    Google Scholar 

  26. Weber, K.: Inbetriebnahme verfahrenstechnischer Anlagen. Praxishandbuch mit Checklisten und Beispiele. Springer, Heidelberg (2015)

    Google Scholar 

  27. Weck, M., Assmann, S.: Abteilungsübergreifendes Projektieren komplexer Maschinen und Anlagen: Methodik und Systemkonzept zur Verbesserung der Zusammenarbeit. VDI-Z integrierte Produktion 137(10), 54–60 (1995)

    Google Scholar 

  28. Wünsch, G.: Methoden für die virtuelle Inbetriebnahme automatisierter Produktionssysteme. Technical University of Munich, Munich (2008)

    Google Scholar 

  29. Zäh, M.F., Wünsch, G., Hensel, T., Lindworsky, A.: Nutzen der virtuellen inbetriebnahme: Ein experiment. Zeitschrift für wirtschaftlichen Fabrikbetrieb 101(10), 595–599 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthes Elstermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elstermann, M., Betz, S., Lederer, M., Schmidt, W., Bührer, L. (2021). Subject-Oriented Reference Model for Virtual Factory Operations Commissioning. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2021 2021. Lecture Notes in Business Information Processing, vol 421. Springer, Cham. https://doi.org/10.1007/978-3-030-79186-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79186-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79185-8

  • Online ISBN: 978-3-030-79186-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics