Skip to main content

Large Clique is Hard on Average for Resolution

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12730))

Included in the following conference series:

Abstract

We prove an \(\exp ({\varOmega (k^{(1-\epsilon )})})\) resolution size lower bound for the k-Clique problem on random graphs, for (roughly speaking) \(k<n^{1/3}\). Towards an optimal resolution lower bound of the problem (i.e. of type \(n^{\varOmega (k)}\)), we also extend the \(n^{\varOmega (k)}\) bound in [2] on regular resolution to a stronger model called a-irregular resolution, for \(k<n^{1/3}\). This model is interesting in that all known CNF families separating regular resolution from general [1, 24] have short proofs in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, it is a product-subset of \([n/k]^k\); the reason is clear after seeing the strong encoding (Sect. 2) where the vertex set is partitioned into k parts.

  2. 2.

    There is also the so-called binary encoding [15], which we will not discuss here.

  3. 3.

    For complete \((k-1)\)-partite graphs, a similar reduction is observed earlier by Alexander Razborov (personal communication).

  4. 4.

    For some specially structured G this is possible; see Remark 2.

  5. 5.

    Although a variant of it seems sufficient for tree-like resolution, cf. [5].

  6. 6.

    The actual construction has one more twist called mirroring, which we ignore here.

  7. 7.

    Other partitions might also seem natural but fail the second property, and we do not know the power of the model with them.

References

  1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular and general resolution. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 448–456. ACM (2002)

    Google Scholar 

  2. Atserias, A., Bonacina, I., de Rezende, S.F., Lauria, M., Nordström, J., Razborov, A.: Clique is hard on average for regular resolution. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 866–877 (2018)

    Google Scholar 

  3. Atserias, A., Müller, M.: Automating resolution is NP-hard. J. ACM (JACM) 67(5), 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  4. Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of independent sets and vertex covers in random graphs. Comput. Complex. 16(3), 245–297 (2007). https://doi.org/10.1007/s00037-007-0230-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search procedures. ACM Trans. Comput. Log. (TOCL) 14(3), 20 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bollobás, B., Erdös, P.: Cliques in random graphs. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 80, pp. 419–427. Cambridge University Press (1976)

    Google Scholar 

  7. Bonacina, I., Talebanfard, N.: Strong ETH and resolution via games and the multiplicity of strategies. Algorithmica 79(1), 29–41 (2016). https://doi.org/10.1007/s00453-016-0228-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Garg, A., Göös, M., Kamath, P., Sokolov, D.: Monotone circuit lower bounds from resolution. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 902–911. ACM (2018)

    Google Scholar 

  9. Göös, M., Koroth, S., Mertz, I., Pitassi, T.: Automating cutting planes is NP-hard. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 68–77 (2020)

    Google Scholar 

  10. Göös, M., Pitassi, T.: Communication lower bounds via critical block sensitivity. SIAM J. Comput. 47(5), 1778–1806 (2018)

    Article  MathSciNet  Google Scholar 

  11. Hajiaghayi, M.T., Khandekar, R., Kortsarz, G.: Fixed parameter inapproximability for clique and setcover in time super-exponential in opt. arXiv preprint arXiv:1310.2711 (2013)

  12. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)

    Article  MathSciNet  Google Scholar 

  13. Hastad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 627–636. IEEE (1996)

    Google Scholar 

  14. Huynh, T., Nordstrom, J.: On the virtue of succinct proofs: amplifying communication complexity hardness to time-space trade-offs in proof complexity. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 233–248 (2012)

    Google Scholar 

  15. Lauria, M., Pudlák, P., Rödl, V., Thapen, N.: The complexity of proving that a graph is Ramsey. Combinatorica 37(2), 253–268 (2017). https://doi.org/10.1007/s00493-015-3193-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae 026, 2 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Pudlák, P.: Proofs as games. Am. Math. Mon. 107(6), 541–550 (2000)

    Article  MathSciNet  Google Scholar 

  18. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. In: Proceedings 38th Annual Symposium on Foundations of Computer Science, pp. 234–243. IEEE (1997)

    Google Scholar 

  19. Razborov, A.: Lower bounds on the monotone complexity of some Boolean functions. In: Soviet Math. Doklady, vol. 31, pp. 354–357 (1985). English translation

    Google Scholar 

  20. Razborov, A.A.: Proof complexity of pigeonhole principles. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 100–116. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46011-X_8

    Chapter  Google Scholar 

  21. Rossman, B.: On the constant-depth complexity of k-clique. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 721–730. ACM (2008)

    Google Scholar 

  22. Stålmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33(3), 277–280 (1996)

    Article  MathSciNet  Google Scholar 

  23. Vassilevska, V.: Efficient algorithms for clique problems. Inf. Process. Lett. 109(4), 254–257 (2009)

    Article  MathSciNet  Google Scholar 

  24. Vinyals, M., Elffers, J., Johannsen, J., Nordström, J.: Simplified and improved separations between regular and general resolution by lifting. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 182–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_14

    Chapter  MATH  Google Scholar 

  25. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 681–690. ACM (2006)

    Google Scholar 

Download references

Acknowledgment

I am indebted to Alexander Razborov for many helpful communications and feedback on the early draft. My thanks also go to Aaron Potechin, Jakob Nordström, and Ilario Bonacina, for various comments and references, and to the anonymous referees for their extensive feedback and suggestions that undoubtedly help improve readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, S. (2021). Large Clique is Hard on Average for Resolution. In: Santhanam, R., Musatov, D. (eds) Computer Science – Theory and Applications. CSR 2021. Lecture Notes in Computer Science(), vol 12730. Springer, Cham. https://doi.org/10.1007/978-3-030-79416-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79416-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79415-6

  • Online ISBN: 978-3-030-79416-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics