Skip to main content

On Closed-Rich Words

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12730))

Included in the following conference series:

  • 655 Accesses

Abstract

A word is called closed if it has a prefix which is also its suffix and there is no internal occurrences of this prefix in the word. In this paper we study the maximal number of closed factors in a word of length n. We show that it is quadratic and give lower and upper bounds for a constant.

The first author is supported by Ministry of Science and Higher Education of the Russian Federation, agreement 075–15–2019–1619. The second author is supported by Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alamro, H., Alzamel, M., Iliopoulos, C.S., Pissis, S.P., Sung, W.K., Watts, S.: Efficient identification of \(k\)-closed strings. Int. J. Found. Comput. Sci. 31(05), 595–610 (2020)

    Article  MathSciNet  Google Scholar 

  2. Badkobeh, G., Fici, G., Lipták, Z.: On the number of closed factors in a word. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 381–390. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_29

    Chapter  Google Scholar 

  3. Badkobeh, G., et al.: Closed factorization. Discret. Appl. Math. 212, 23–29 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bannai, H., et al.: Efficient algorithms for longest closed factor array. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 95–102. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5_10

    Chapter  Google Scholar 

  6. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. Int. J. Found. Comput. Sci. 15, 293–306 (2004)

    Article  MathSciNet  Google Scholar 

  7. Cassaigne, J., Karhumäki, J., Puzynina, S.: On k-abelian palindromes. Inf. Comput. 260, 89–98 (2018)

    Article  MathSciNet  Google Scholar 

  8. Crochemore, M., Ilie, L., Tinta, L.: The “runs” conjecture. Theor. Comput. Sci. 412(27), 2931–2941 (2011)

    Article  MathSciNet  Google Scholar 

  9. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain? Discret. Appl. Math. 180, 52–69 (2015)

    Article  MathSciNet  Google Scholar 

  10. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255(1), 539–553 (2001)

    Article  MathSciNet  Google Scholar 

  11. Durand, F.: A characterization of substitutive sequences using return words. Discret. Math. 179(1–3), 89–101 (1998)

    Article  MathSciNet  Google Scholar 

  12. Fici, G.: A classification of trapezoidal words. In: Ambroz, P., Holub, S., Masáková, Z. (eds.) Words 2011. EPTCS, vol. 63, pp. 129–137 (2011)

    Google Scholar 

  13. Fici, G.: Open and closed words. Bull. Eur. Assoc. Theor. Comput. Sci. 123, 140–149 (2017)

    MATH  Google Scholar 

  14. Fici, G., Zamboni, L.Q.: On the least number of palindromes contained in an infinite word. Theor. Comput. Sci. 481, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb. Theor. Ser. A 82(1), 112–120 (1998)

    Article  MathSciNet  Google Scholar 

  16. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Comb. 30(2), 510–531 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: FOCS 1999, pp. 596–604. IEEE Computer Society (1999)

    Google Scholar 

  18. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press (2002)

    Google Scholar 

  19. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)

    Article  MathSciNet  Google Scholar 

  20. Parshina, O., Postic, M.: Open and closed complexity of infinite words. arXiv:2005.06254 (2020)

  21. Parshina, O., Zamboni, L.Q.: Open and closed factors in Arnoux-Rauzy words. Adv. Appl. Math. 107, 22–31 (2019)

    Article  MathSciNet  Google Scholar 

  22. Peltomäki, J.: Introducing privileged words: privileged complexity of Sturmian words. Theor. Comput. Sci. 500, 57–67 (2013)

    Article  MathSciNet  Google Scholar 

  23. Toeplitz, O.: Ein beispiel zur theorie der fastperiodischen funktionen. Math. Ann. 98, 281–295 (1928)

    Article  MathSciNet  Google Scholar 

  24. Vuillon, L.: A characterization of Sturmian words by return words. Eur. J. Comb. 22(2), 263–275 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Parshina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parshina, O., Puzynina, S. (2021). On Closed-Rich Words. In: Santhanam, R., Musatov, D. (eds) Computer Science – Theory and Applications. CSR 2021. Lecture Notes in Computer Science(), vol 12730. Springer, Cham. https://doi.org/10.1007/978-3-030-79416-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79416-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79415-6

  • Online ISBN: 978-3-030-79416-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics