Abstract
A word is called closed if it has a prefix which is also its suffix and there is no internal occurrences of this prefix in the word. In this paper we study the maximal number of closed factors in a word of length n. We show that it is quadratic and give lower and upper bounds for a constant.
The first author is supported by Ministry of Science and Higher Education of the Russian Federation, agreement 075–15–2019–1619. The second author is supported by Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alamro, H., Alzamel, M., Iliopoulos, C.S., Pissis, S.P., Sung, W.K., Watts, S.: Efficient identification of \(k\)-closed strings. Int. J. Found. Comput. Sci. 31(05), 595–610 (2020)
Badkobeh, G., Fici, G., Lipták, Z.: On the number of closed factors in a word. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 381–390. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_29
Badkobeh, G., et al.: Closed factorization. Discret. Appl. Math. 212, 23–29 (2016)
Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)
Bannai, H., et al.: Efficient algorithms for longest closed factor array. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 95–102. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5_10
Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. Int. J. Found. Comput. Sci. 15, 293–306 (2004)
Cassaigne, J., Karhumäki, J., Puzynina, S.: On k-abelian palindromes. Inf. Comput. 260, 89–98 (2018)
Crochemore, M., Ilie, L., Tinta, L.: The “runs” conjecture. Theor. Comput. Sci. 412(27), 2931–2941 (2011)
Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain? Discret. Appl. Math. 180, 52–69 (2015)
Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255(1), 539–553 (2001)
Durand, F.: A characterization of substitutive sequences using return words. Discret. Math. 179(1–3), 89–101 (1998)
Fici, G.: A classification of trapezoidal words. In: Ambroz, P., Holub, S., Masáková, Z. (eds.) Words 2011. EPTCS, vol. 63, pp. 129–137 (2011)
Fici, G.: Open and closed words. Bull. Eur. Assoc. Theor. Comput. Sci. 123, 140–149 (2017)
Fici, G., Zamboni, L.Q.: On the least number of palindromes contained in an infinite word. Theor. Comput. Sci. 481, 1–8 (2013)
Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb. Theor. Ser. A 82(1), 112–120 (1998)
Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Comb. 30(2), 510–531 (2009)
Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: FOCS 1999, pp. 596–604. IEEE Computer Society (1999)
Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press (2002)
Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)
Parshina, O., Postic, M.: Open and closed complexity of infinite words. arXiv:2005.06254 (2020)
Parshina, O., Zamboni, L.Q.: Open and closed factors in Arnoux-Rauzy words. Adv. Appl. Math. 107, 22–31 (2019)
Peltomäki, J.: Introducing privileged words: privileged complexity of Sturmian words. Theor. Comput. Sci. 500, 57–67 (2013)
Toeplitz, O.: Ein beispiel zur theorie der fastperiodischen funktionen. Math. Ann. 98, 281–295 (1928)
Vuillon, L.: A characterization of Sturmian words by return words. Eur. J. Comb. 22(2), 263–275 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Parshina, O., Puzynina, S. (2021). On Closed-Rich Words. In: Santhanam, R., Musatov, D. (eds) Computer Science – Theory and Applications. CSR 2021. Lecture Notes in Computer Science(), vol 12730. Springer, Cham. https://doi.org/10.1007/978-3-030-79416-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-79416-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79415-6
Online ISBN: 978-3-030-79416-3
eBook Packages: Computer ScienceComputer Science (R0)