Skip to main content

Approximation and Complexity of the Capacitated Geometric Median Problem

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12730))

Included in the following conference series:

  • 502 Accesses

Abstract

In the Capacitated Geometric Median problem, we are given n points in d-dimensional real space and an integer m, the goal is to locate a new point in space (center) and choose m of the input points to minimize the sum of Euclidean distances from the center to the chosen points. We show that this problem admits an “almost exact” polynomial-time algorithm in the case of fixed d and an approximation scheme PTAS in high dimensions. On the other hand, we prove that, if the dimension of space is not fixed, Capacitated Geometric Median is strongly NP-hard and does not admit a scheme FPTAS unless P \(=\) NP.

The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project 0314-2019-0014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. Combinatorial and Computational Geometry, MSRI Publications 52, 1–30 (2005). http://library.msri.org/books/Book52/files/01agar.pdf

  2. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding \(k\) points with minimum diameter and related problems. J. Algorithms 12(1), 38–56 (1991). https://doi.org/10.1016/0196-6774(91)90022-Q

    Article  MathSciNet  MATH  Google Scholar 

  3. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974). https://doi.org/10.1002/zamm.19790590233

    Book  MATH  Google Scholar 

  4. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3(2), 177–191 (1988). https://doi.org/10.1007/BF02187906

    Article  MathSciNet  MATH  Google Scholar 

  5. Bǎdoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proceedings of the 34th ACM Symposium on Theory of Computing (STOC 2002), pp. 250–257 (2002). https://doi.org/10.1145/509907.509947

  6. Bhattacharya, A., Jaiswal, R., Kumar, A.: Faster algorithms for the constrained \(k\)-means problem. Theory Comput. Syst. 62(1), 93–115 (2018). https://doi.org/10.1007/s00224-017-9820-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 642–651 (2001). https://dl.acm.org/doi/10.5555/365411.365555

  8. Chen, K.: A constant factor approximation algorithm for \(k\)-median clustering with outliers. In: Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 826–835 (2008). https://dl.acm.org/doi/10.5555/1347082.1347173

  9. Chen, K.: On coresets for \(k\)-median and \(k\)-means clustering in metric and Euclidean spaces and their applications. SIAM J. Comput. 39(3), 923–947 (2009). https://doi.org/10.1137/070699007

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, M.B., Lee, Y.T., Miller, G., Pachocki, J., Sidford, A.: Geometric median in nearly linear time. arXiv:1606.05225 [cs.DS] (2016). https://arxiv.org/abs/1606.05225

  11. Cohen-Addad, V., Feldmann, A.E., Saulpic, D.: Near-linear time approximations schemes for clustering in doubling metrics. In: Proceedings of the 60th Symposium on Foundations of Computer Science (FOCS 2019), pp. 540–559 (2019). https://doi.org/10.1109/FOCS.2019.00041

  12. ElGindy, H., Keil, J.M.: Efficient algorithms for the capacitated \(1\)-median problem. ORSA J. Comput. 4(4), 418–425 (1992). https://doi.org/10.1287/ijoc.4.4.418

    Article  MathSciNet  MATH  Google Scholar 

  13. Feige, U., Karpinski, M., Langberg, M.: A note on approximating max-bisection on regular graphs. Inf. Proc. Letters 79(4), 181–188 (2001). https://doi.org/10.1016/S0020-0190(00)00189-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based \(k\)-clustering. In: Proceedings of the 10th ACM Symposium on Computational Geometry, pp. 332–339 (1994). https://doi.org/10.1145/177424.178042

  15. Kel’manov, A.V., Pyatkin, A.V.: NP-completeness of some problems of choosing a vector subset. J. Appl. Industr. Math. 5(3), 352–357 (2011). https://doi.org/10.1134/S1990478911030069

    Article  Google Scholar 

  16. Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for \(k\)-median and \(k\)-means with outliers via iterative rounding. In: Proceedings of the 50th ACM Symposium on Theory of Computing (STOC 2018), pp. 646–659 (2018). https://doi.org/10.1145/3188745.3188882

  17. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clustering problems in any dimensions. J. ACM. 57(2), 1–32 (2010). https://doi.org/10.1145/1667053.1667054

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, D.T.: On \(k\)-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31(6), 478–487 (1982). https://doi.org/10.1109/TC.1982.1676031

    Article  MathSciNet  MATH  Google Scholar 

  19. Mulmuley, K.: Output sensitive and dynamic constructions of higher order Voronoi diagrams and levels in arrangements. J. Comp. Syst. Sci. 47(3), 437–458 (1993). https://doi.org/10.1016/0022-0000(93)90041-T

    Article  MathSciNet  MATH  Google Scholar 

  20. Shenmaier, V.V.: An approximation scheme for a problem of search for a vector subset. J. Appl. Industr. Math. 6(3), 381–386 (2012). https://doi.org/10.1134/S1990478912030131

    Article  MathSciNet  MATH  Google Scholar 

  21. Shenmaier, V.V.: The problem of a minimal ball enclosing \(k\) points. J. Appl. Industr. Math. 7(3), 444–448 (2013). https://doi.org/10.1134/S1990478913030186

    Article  MathSciNet  MATH  Google Scholar 

  22. Shenmaier, V.V.: Complexity and approximation of the smallest \(k\)-enclosing ball problem. European J. Comb. 48, 81–87 (2015). https://doi.org/10.1016/j.ejc.2015.02.011

    Article  MathSciNet  MATH  Google Scholar 

  23. Shenmaier, V.V.: Solving some vector subset problems by Voronoi diagrams. J. Appl. Industr. Math. 10(4), 560–566 (2016). https://doi.org/10.1134/S199047891604013X

    Article  MathSciNet  MATH  Google Scholar 

  24. Shenmaier, V.V.: A structural theorem for center-based clustering in high-dimensional Euclidean space. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943, pp. 284–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37599-7_24

    Chapter  Google Scholar 

  25. Shenmaier, V.V.: Some estimates on the discretization of geometric center-based problems in high dimensions. In: Kochetov, Y., Bykadorov, I., Gruzdeva, T. (eds.) MOTOR 2020. CCIS, vol. 1275, pp. 88–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58657-7_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shenmaier, V. (2021). Approximation and Complexity of the Capacitated Geometric Median Problem. In: Santhanam, R., Musatov, D. (eds) Computer Science – Theory and Applications. CSR 2021. Lecture Notes in Computer Science(), vol 12730. Springer, Cham. https://doi.org/10.1007/978-3-030-79416-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79416-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79415-6

  • Online ISBN: 978-3-030-79416-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics