Skip to main content

Birth-Death MCMC Approach for Multivariate Beta Mixture Models in Medical Applications

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices (IEA/AIE 2021)

Abstract

Lately, data mining tools have received significant attention because of their capability in modeling and analyzing collected data in various fields including medical research. With the growing availability of medical data, it is crucial to develop models that can discover hidden patterns in data and analyze them. Among various techniques, mixture models have been widely used for categorization problems in statistical modeling. In this paper, a Bayesian learning framework is proposed for multivariate Beta mixture model. Previous works have shown that multivariate Beta distribution can be considered as an alternative to Gaussian due to the flexibility of its shape and convincing performance. In particular, we use the Birth and Death Markov Chain Monte Carlo (MCMC) algorithm, which allows simultaneous parameters estimation and model selection. Experimental results on medical applications demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/thyroid+disease.

References

  1. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. John Wiley & Sons, New Jersey (2009)

    Google Scholar 

  2. Soni, J., Ansari, U., Sharma, D., Soni, S.: Predictive data mining for medical diagnosis: an overview of heart disease prediction. Int. J. Comput. Appl. 17(8), 43–48 (2011)

    Google Scholar 

  3. Sohail, M.N., Jiadong, R., Uba, M.M., Irshad, M.: A comprehensive looks at data mining techniques contributing to medical data growth: a survey of researcher reviews. In: Patnaik, S., Jain, V. (eds.) Recent Developments in Intelligent Computing, Communication and Devices. AISC, vol. 752, pp. 21–26. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8944-2_3

    Chapter  Google Scholar 

  4. Chen, W., Feng, G.: Spectral clustering with discriminant cuts. Knowl.-Based Syst. 28, 27–37 (2012)

    Article  Google Scholar 

  5. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley & Sons, New Jersey (2004)

    Google Scholar 

  6. Channoufi, I., Bourouis, S., Bouguila, N., Hamrouni, K.: Image and video denoising by combining unsupervised bounded generalized gaussian mixture modeling and spatial information. Multimedia Tools Appl. 77(19), 25591–25606 (2018). https://doi.org/10.1007/s11042-018-5808-9

    Article  Google Scholar 

  7. Bourouis, S., Al-Osaimi, F.R., Bouguila, N., Sallay, H., Aldosari, F., Al Mashrgy, M.: Bayesian inference by reversible jump MCMC for clustering based on finite generalized inverted dirichlet mixtures. Soft Comput. 23(14), 5799–5813 (2019)

    Article  Google Scholar 

  8. Fan, W., Bouguila, N.: Learning finite beta-liouville mixture models via variational bayes for proportional data clustering. In: Twenty-Third International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  9. Manouchehri, N., Bouguila, N., Fan, W.: Nonparametric variational learning of multivariate beta mixture models in medical applications. Int. J. Imaging Syst. Technol. 31(1), 128–140 (2020)

    Google Scholar 

  10. McLachlan, G.J., Krishnan, T.: The EM algorithm and extensions, vol. 382. John Wiley & Sons, New Jersey (2007)

    Google Scholar 

  11. Robert, C.: The Bayesian Choice: From Decision-theoretic Foundations to Computational Implementation. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  12. Bdiri, T., Bouguila, N.: Bayesian learning of inverted dirichlet mixtures for SVM kernels generation. Neural Comput. Appl. 23(5), 1443–1458 (2013)

    Article  Google Scholar 

  13. Bolstad, W.M., Curran, J.M.: Introduction to Bayesian Statistics. John Wiley & Sons, New Jersey (2016)

    Google Scholar 

  14. Bouguila, N., Ziou, D.: Unsupervised selection of a finite dirichlet mixture model: an mml-based approach. IEEE Trans. Knowl. Data Eng. 18(8), 993–1009 (2006)

    Article  Google Scholar 

  15. Stephens, M.: Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Annals of Statistics, pp. 40–74 (2000)

    Google Scholar 

  16. Shawe-Taylor, J., Williamson, R.C.: A pac analysis of a bayesian estimator. In: Proceedings of the Tenth Annual Conference on Computational Learning Theory, pp. 2–9 (1997)

    Google Scholar 

  17. Elguebaly, T., Bouguila, N.: Bayesian learning of generalized gaussian mixture models on biomedical images. In: Schwenker, F., El. Gayar, N. (eds.) ANNPR 2010. LNCS (LNAI), vol. 5998, pp. 207–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12159-3_19

    Chapter  Google Scholar 

  18. Cappe, O., Robert, C.P.: Markov chain monte carlo: 10 years and still running! J. Am. Stat. Assoc. 95(452), 1282–1286 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Bouguila, N., Wang, J.H., Hamza, A.B.: Software modules categorization through likelihood and bayesian analysis of finite dirichlet mixtures. J. Appl. Stat. 37(2), 235–252 (2010)

    Article  MathSciNet  Google Scholar 

  20. Richardson, S., Green, P.J.: On bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. Ser. B (Stat. Methodol.) 59(4), 731–792 (1997)

    Article  Google Scholar 

  21. Bouguila, N., Elguebaly, T.: A fully bayesian model based on reversible jump MCMC and finite beta mixtures for clustering. Expert Syst. Appl. 39(5), 5946–5959 (2012)

    Article  Google Scholar 

  22. Shi, J., Murray-Smith, R., Titterington, D.: Birth-death MCMC methods for mixtures with an unknown number of components. Technical report, Citeseer (2002)

    Google Scholar 

  23. Mohammadi, A., Salehi-Rad, M., Wit, E.: Using mixture of gamma distributions for bayesian analysis in an m/g/1 queue with optional second service. Comput. Stat. 28(2), 683–700 (2013)

    Article  MathSciNet  Google Scholar 

  24. Elguebaly, T., Bouguila, N.: Medical image classification using birth-and-death MCMC. In: IEEE International Symposium on Circuits and Systems. IEEE 2012, pp. 2075–2078 (2012)

    Google Scholar 

  25. Elguebaly, T., Bouguila, N.: A bayesian approach for the classification of mammographic masses. In: 2013 Sixth International Conference on Developments in eSystems Engineering, pp. 99–104. IEEE (2013)

    Google Scholar 

  26. Cappé, O., Robert, C.P., Rydén, T.: Reversible jump, birth-and-death and more general continuous time markov chain monte carlo samplers. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 65(3), 679–700 (2003)

    Article  MathSciNet  Google Scholar 

  27. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  28. Bdiri, T., Bouguila, N.: Bayesian learning of inverted dirichlet mixtures for svm kernels generation. Neural Comput. Appl. 23(5), 1443–1458 (2013)

    Article  Google Scholar 

  29. Chicco, D., Jurman, G.: Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med. Inform. Decis. Making 20(1), 16 (2020)

    Article  Google Scholar 

  30. Tyagi, A., Mehra, R., Saxena, A.: Interactive thyroid disease prediction system using machine learning technique. In: 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 689–693. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Amirkhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amirkhani, M., Manouchehri, N., Bouguila, N. (2021). Birth-Death MCMC Approach for Multivariate Beta Mixture Models in Medical Applications. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices. IEA/AIE 2021. Lecture Notes in Computer Science(), vol 12798. Springer, Cham. https://doi.org/10.1007/978-3-030-79457-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79457-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79456-9

  • Online ISBN: 978-3-030-79457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics