Abstract
In this paper, we first propose a federated learning-based embedding model for transaction classification. The model takes the transaction data as a set of frequent item-sets. After that model is able to learn low dimensional continuous vector by preserving the frequent item-sets contextual relationship. Results then indicated that the designed model can help and improve the decision boundary by reducing the global loss function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. Int. Conf. Very Large Data Bases 1215, 487–499 (1994)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning Representations (2015)
Chang, K., et al.: Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 25(8), 945–954 (2018)
Cheng, H., Yan, X., Han, J., Hsu, C.: Discriminative frequent pattern analysis for effective classification. In: The International Conference on Data Engineering, pp. 716–725 (2007)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: The Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)
Fawaz, H.I.: Deep learning for time series classification. CoRR abs/2010.00567 (2020)
Fournier-Viger, P., et al.: The spmf open-source data mining library version 2. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 36–40 (2016)
Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of sequential pattern mining. Data Sci. Pattern Recognit. 1(1), 54–77 (2017)
Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdisc. Rev.: Data Mining Knowl. Discov. 7(4), e1207 (2017)
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)
Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53–87 (2004)
Hayes, J., Ohrimenko, O.: Contamination attacks and mitigation in multi-party machine learning. CoRR abs/1901.02402 (2019)
Horn, G.V., et al.: The inaturalist species classification and detection dataset. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)
Kalra, M., Lal, N., Qamar, S.: K-mean clustering algorithm approach for data mining of heterogeneous data. In: Information and Communication Technology for Sustainable Development, pp. 61–70 (2018)
Konecný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence. CoRR abs/1610.02527 (2016)
Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. In: Advances in Neural Information Processing Systems, pp. 289–297 (2016)
Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)
Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: The Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Disc. 1(3), 259–289 (1997)
Mohassel, P., Rindal, P.: Aby\({}^{\text{3}}\): A mixed protocol framework for machine learning. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM SIGSAC Conference on Computer and Communications Security, pp. 35–52 (2018)
Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y., Dehghantanha, A., Srivastava, G.: A survey on security and privacy of federated learning. Future Gener. Comput. Syst. (2020)
Nguyen, D., Nguyen, T.D., Luo, W., Venkatesh, S.: Trans2Vec: learning transaction embedding via items and frequent itemsets. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 361–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_29
Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V.D., García, Á.L., Heredia, I., Malík, P., Hluchý, L.: Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif. Intell. Rev. 52(1), 77–124 (2019)
Połap, D., Srivastava, G., Jolfaei, A., Parizi, R.M.: Blockchain technology and neural networks for the internet of medical things. In: IEEE Conference on Computer Communications Workshops, pp. 508–513 (2020)
Rajpurkar, P., et al.: Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR abs/1711.05225 (2017)
Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the ACM SIGSAC conference on Computer and Communications Security, pp. 1310–1321 (2015)
Siam, M., Elkerdawy, S., Jägersand, M., Yogamani, S.K.: Deep semantic segmentation for automated driving: Taxonomy, roadmap and challenges. In: IEEE International Conference on Intelligent Transportation Systems, pp. 1–8 (2017)
Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017.2761740
Vinayakumar, R., Soman, K.P., Poornachandran, P.: Applying convolutional neural network for network intrusion detection. In: International Conference on Advances in Computing, Communications and Informatics, pp. 1222–1228 (2017)
Wainberg, M., Merico, D., Delong, A., Frey, B.J.: Deep learning in biomedicine. Nat. Biotechnol. 36(9), 829–838 (2018)
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. Int. Conf. Mach. Learn. 37, 2048–2057 (2015)
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ahmed, U., Lin, J.CW., Srivastava, G., Fournier-Viger, P. (2021). A Transaction Classification Model of Federated Learning. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices. IEA/AIE 2021. Lecture Notes in Computer Science(), vol 12798. Springer, Cham. https://doi.org/10.1007/978-3-030-79457-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-79457-6_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79456-9
Online ISBN: 978-3-030-79457-6
eBook Packages: Computer ScienceComputer Science (R0)