Skip to main content

A Transaction Classification Model of Federated Learning

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices (IEA/AIE 2021)

Abstract

In this paper, we first propose a federated learning-based embedding model for transaction classification. The model takes the transaction data as a set of frequent item-sets. After that model is able to learn low dimensional continuous vector by preserving the frequent item-sets contextual relationship. Results then indicated that the designed model can help and improve the decision boundary by reducing the global loss function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. Int. Conf. Very Large Data Bases 1215, 487–499 (1994)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning Representations (2015)

    Google Scholar 

  3. Chang, K., et al.: Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 25(8), 945–954 (2018)

    Article  Google Scholar 

  4. Cheng, H., Yan, X., Han, J., Hsu, C.: Discriminative frequent pattern analysis for effective classification. In: The International Conference on Data Engineering, pp. 716–725 (2007)

    Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: The Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)

    Google Scholar 

  6. Fawaz, H.I.: Deep learning for time series classification. CoRR abs/2010.00567 (2020)

    Google Scholar 

  7. Fournier-Viger, P., et al.: The spmf open-source data mining library version 2. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 36–40 (2016)

    Google Scholar 

  8. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of sequential pattern mining. Data Sci. Pattern Recognit. 1(1), 54–77 (2017)

    Google Scholar 

  9. Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdisc. Rev.: Data Mining Knowl. Discov. 7(4), e1207 (2017)

    Google Scholar 

  10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)

    Google Scholar 

  11. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hayes, J., Ohrimenko, O.: Contamination attacks and mitigation in multi-party machine learning. CoRR abs/1901.02402 (2019)

    Google Scholar 

  13. Horn, G.V., et al.: The inaturalist species classification and detection dataset. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)

    Google Scholar 

  14. Kalra, M., Lal, N., Qamar, S.: K-mean clustering algorithm approach for data mining of heterogeneous data. In: Information and Communication Technology for Sustainable Development, pp. 61–70 (2018)

    Google Scholar 

  15. Konecný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence. CoRR abs/1610.02527 (2016)

    Google Scholar 

  16. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. In: Advances in Neural Information Processing Systems, pp. 289–297 (2016)

    Google Scholar 

  17. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  18. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: The Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)

    Google Scholar 

  19. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Disc. 1(3), 259–289 (1997)

    Article  Google Scholar 

  20. Mohassel, P., Rindal, P.: Aby\({}^{\text{3}}\): A mixed protocol framework for machine learning. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM SIGSAC Conference on Computer and Communications Security, pp. 35–52 (2018)

    Google Scholar 

  21. Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y., Dehghantanha, A., Srivastava, G.: A survey on security and privacy of federated learning. Future Gener. Comput. Syst. (2020)

    Google Scholar 

  22. Nguyen, D., Nguyen, T.D., Luo, W., Venkatesh, S.: Trans2Vec: learning transaction embedding via items and frequent itemsets. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 361–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_29

    Chapter  Google Scholar 

  23. Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V.D., García, Á.L., Heredia, I., Malík, P., Hluchý, L.: Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif. Intell. Rev. 52(1), 77–124 (2019)

    Article  Google Scholar 

  24. Połap, D., Srivastava, G., Jolfaei, A., Parizi, R.M.: Blockchain technology and neural networks for the internet of medical things. In: IEEE Conference on Computer Communications Workshops, pp. 508–513 (2020)

    Google Scholar 

  25. Rajpurkar, P., et al.: Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR abs/1711.05225 (2017)

    Google Scholar 

  26. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the ACM SIGSAC conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  27. Siam, M., Elkerdawy, S., Jägersand, M., Yogamani, S.K.: Deep semantic segmentation for automated driving: Taxonomy, roadmap and challenges. In: IEEE International Conference on Intelligent Transportation Systems, pp. 1–8 (2017)

    Google Scholar 

  28. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017.2761740

    Article  Google Scholar 

  29. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Applying convolutional neural network for network intrusion detection. In: International Conference on Advances in Computing, Communications and Informatics, pp. 1222–1228 (2017)

    Google Scholar 

  30. Wainberg, M., Merico, D., Delong, A., Frey, B.J.: Deep learning in biomedicine. Nat. Biotechnol. 36(9), 829–838 (2018)

    Article  Google Scholar 

  31. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. Int. Conf. Mach. Learn. 37, 2048–2057 (2015)

    Google Scholar 

  32. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Chun-Wei Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, U., Lin, J.CW., Srivastava, G., Fournier-Viger, P. (2021). A Transaction Classification Model of Federated Learning. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices. IEA/AIE 2021. Lecture Notes in Computer Science(), vol 12798. Springer, Cham. https://doi.org/10.1007/978-3-030-79457-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79457-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79456-9

  • Online ISBN: 978-3-030-79457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics