Skip to main content

Query by Humming for Song Identification Using Voice Isolation

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. From Theory to Practice (IEA/AIE 2021)

Abstract

There are some methods for searching in large music databases, like searching by song name or artist name. However, in some cases these methods are not enough. For instance, a person might not remember the name of a song, but might remember its melody. In Music Information Retrieval, there is a task called Query-By-Humming, which allows retrieving a rank of songs that are similar to an audio humming. In this research, we propose the use of vocal isolation methods to improve query-by-humming systems. To achieve this, different configurations of Query-by-Humming systems were tested to analyze the results and determine in which cases our proposal works better. The results showed that vocal isolation improves the performance of Query-by-Humming systems when the music collection consists of modern songs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Music Business Worldwide - https://bit.ly/37TQNE4.

  2. 2.

    Music Technology Group - https://bit.ly/2IdElnG.

References

  1. Bogdanov, D., et al.: Essentia: an audio analysis library for music information retrieval. In: ISMIR (2013)

    Google Scholar 

  2. Défossez, A., Usunier, N., Bottou, L., Bach, F.R.: Music source separation in the waveform domain. CoRR abs/1911.13254 (2019)

    Google Scholar 

  3. Doraisamy, S., Rüger, S.M.: Robust polyphonic music retrieval with n-grams. J. Intell. Inf. Syst. 21(1), 53–70 (2003)

    Article  Google Scholar 

  4. Ghias, A., Logan, J., Chamberlin, D., Smith, B.C.: Query by humming: musical information retrieval in an audio database. In: ACM Multimedia (1995)

    Google Scholar 

  5. Guo, Z., Wang, Q., Liu, G., Guo, J.: A query by humming system based on locality sensitive hashing indexes. Signal Process. 93(8), 2229–2243 (2013)

    Article  Google Scholar 

  6. Gómez, E., Klapuri, A., Meudic, B.: Melody description and extraction in the context of music content processing. J. New Music Res. 32, 23–40 (2003)

    Article  Google Scholar 

  7. Hennequin, R., Khlif, A., Voituret, F., Moussallam, M.: Spleeter: a fast and efficient music source separation tool with pre-trained models. J. Open Source Softw. 5(50), 2154 (2020)

    Article  Google Scholar 

  8. Huang, Y., Lai, S., Sandnes, F.E.: A repeating pattern based query-by-humming fuzzy system for polyphonic melody retrieval. Appl. Soft Comput. 33, 197–206 (2015)

    Article  Google Scholar 

  9. Hutchins, S., Peretz, I.: A frog in your throat or in your ear? searching for the causes of poor singing. J. Expe. Psychol. General 141, 76 (2011)

    Article  Google Scholar 

  10. Khan, N.A., Mushtaq, M.: Open issues on query by humming. In: ICADIWT (2011)

    Google Scholar 

  11. Liu, N.: Effective results ranking for mobile query by singing/humming using a hybrid recommendation mechanism. IEEE Trans. Multim. 16(5), 1407–1420 (2014)

    Article  Google Scholar 

  12. Lozano-Mejía, D.J., Vega-Uribe, E.P., Ugarte, W.: Content-based image classification for sheet music books recognition. In: 2020 IEEE Engineering International Research Conference (EIRCON) (2020)

    Google Scholar 

  13. Lu, L., You, H., Zhang, H.J.: A new approach to query by humming in music retrieval. In: IEEE ICME (2001)

    Google Scholar 

  14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  15. Ozcan, G., Isikhan, C., Alpkocak, A.: Melody extraction on MIDI music files. In: IEEE ISM (2005)

    Google Scholar 

  16. Parmer, T., Ahn, Y.: Evolution of the informational complexity of contemporary western music. In: ISMIR (2019)

    Google Scholar 

  17. Pham, T.D., Nam, G.P., Shin, K.Y., Park, K.R.: A novel query-by-singing/humming method by estimating matching positions based on multi-layered perceptron. KSII Trans. Internet Inf. Syst. 7(7), 1657–1670 (2013)

    Article  Google Scholar 

  18. Rocamora, M., Cancela, P., Pardo, A.: Query by humming: automatically building the database from music recordings. Pattern Recognit. Lett. 36, 272–280 (2014)

    Article  Google Scholar 

  19. Salamon, J., Gómez, E.: Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Trans. Speech Audio Process. 20(6), 1759–1770 (2012)

    Article  Google Scholar 

  20. Salamon, J., Serrà, J., Gómez, E.: Tonal representations for music retrieval: from version identification to query-by-humming. Int. J. Multim. Inf. Retr. 2(1), 45–58 (2013)

    Article  Google Scholar 

  21. Serrà, J., Gómez, E., Herrera, P.: Audio cover song identification and similarity: Background, approaches, evaluation, and beyond. In: Raś, Z.W., Wieczorkowska, A.A. (eds.) Advances in Music Information Retrieval. SCI, vol. 274, pp. 307–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11674-2_14

    Chapter  Google Scholar 

  22. Serrà, J., Serra, X., Andrzejak, R.: Cross recurrence quantification for cover song identification. New J. Phys. 11, 09307 (2009)

    Article  Google Scholar 

  23. Stasiak, B., Skiba, M., Niedzielski, A.: FlatDTW - dynamic time warping optimization for piecewise constant templates. Digit. Signal Process. 85, 86–98 (2019)

    Article  Google Scholar 

  24. Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Soft constraints for pattern mining. J. Intell. Inf. Syst. 44(2), 193–221 (2013). https://doi.org/10.1007/s10844-013-0281-4

    Article  MATH  Google Scholar 

  25. Wang, C., Jang, J.R.: Improving query-by-singing/humming by combining melody and lyric information. IEEE ACM Trans. Audio Speech Lang. Process. 23(4), 798–806 (2015)

    Article  Google Scholar 

  26. Wang, L., Huang, S., Hu, S., Liang, J., Xu, B.: Improving searching speed and accuracy of query by humming system based on three methods: feature fusion, candidates set reduction and multiple similarity measurement rescoring. In: INTERSPEECH. ISCA (2008)

    Google Scholar 

  27. Zhang, W., Chen, Z., Yin, F.: Main melody extraction from polyphonic music based on modified Euclidean algorithm. Appl. Acoust. 112, 70–78 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Ugarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alfaro-Paredes, E., Alfaro-Carrasco, L., Ugarte, W. (2021). Query by Humming for Song Identification Using Voice Isolation. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2021. Lecture Notes in Computer Science(), vol 12799. Springer, Cham. https://doi.org/10.1007/978-3-030-79463-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79463-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79462-0

  • Online ISBN: 978-3-030-79463-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics