Skip to main content

Implementation of Neural Network Regression Model for Faster Redshift Analysis on Cloud-Based Spark Platform

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. From Theory to Practice (IEA/AIE 2021)

Abstract

Since observational astronomy has turned into data-driven astronomy recently, analyzing this huge data effectively to extract useful information is becoming an important and essential task day by day. In this paper, we developed a neural network model to analyze redshift data of million of extragalactic objects. In order to do that, two different approaches for faster training of neural networks have been proposed. The first approach deals with the training model using Lipschitz-based adaptive learning rate in a single node/machine whereas the second approach discusses processing astronomy data in a multinode clustered environment. This approach can scale up to accommodate multiple nodes when necessary to handle bulk data using Apache spark and Elephas. Additionally, this paper also addresses the scalability and storage issue by implementing the model on the cloud. We used the distributed processing capability of the spark that reads data directly from HDFS (Hadoop Distributed File System) of multiple machines and our experimental results show that using these approaches we can reduce training time and CPU time tremendously which is a crucial requirement while dealing with the extensive dataset. Although we have tested our experiment on a subset of huge data it can be scaled to process data of any size as well without much hurdle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tallada, P., et al.: CosmoHub: interactive exploration and distribution of astronomical data on Hadoop. Astron. Comput. 32, 100391 (2020)

    Article  Google Scholar 

  2. Borne, K.D.: Astroinformatics: a 21st century approach to astronomy. arXiv preprint arXiv:0909.3892 (2009)

  3. Ball, N.M., Brunner, R.J.: Data mining and machine learning in astronomy. Int. J. Mod. Phys. D 19(07), 1049–1106 (2010)

    Article  Google Scholar 

  4. Kremer, J., et al.: Big universe, big data: machine learning and image analysis for astronomy. IEEE Intell. Syst. 32(2), 16–22 (2017)

    Article  Google Scholar 

  5. Fluke, C.J., et al.: Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 10(2), e1349 (2020)

    Google Scholar 

  6. Baron, D.: Machine learning in astronomy: a practical overview. arXiv preprint arXiv:1904.07248 (2019)

  7. Barchi, P.H., et al.: Machine and deep learning applied to galaxy morphology-a comparative study. Astron. Comput. 30, 100334 (2020)

    Article  Google Scholar 

  8. Wadadekar, Y.: Estimating photometric redshifts using support vector machines. Publ. Astron. Soc. Pac. 117(827), 79 (2004)

    Article  Google Scholar 

  9. Collister, A.A., Lahav, O.: ANNz: estimating photometric redshifts using artificial neural networks. Publ. Astron. Soc. Pac. 116(818), 345 (2004)

    Article  Google Scholar 

  10. Garofalo, M., Botta, A., Ventre, G.: Astrophysics and big data: challenges, methods, and tools. Proc. Int. Astron. Union 12(S325), 345–348 (2016)

    Article  Google Scholar 

  11. Ball, N.M.: CANFAR+ Skytree: a cloud computing and data mining system for astronomy. arXiv preprint arXiv:1312.3996 (2013)

  12. Hong, S., et al.: Constraining cosmology with big data statistics of cosmological graphs. Mon. Not. R. Astron. Soc. 493(4), 5972–5986 (2020)

    Article  Google Scholar 

  13. Vujčić, V., Darko, J.: Real-time stream processing in astronomy. In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, pp. 173–182. Elsevier (2020)

    Google Scholar 

  14. Brahem, M., Zeitouni, K., Yeh, L.: Astroide: a unified astronomical big data processing engine over spark. IEEE Trans. Big Data 6(3), 477–491 (2018)

    Article  Google Scholar 

  15. Zhang, Z., et al.: Kira: processing astronomy imagery using big data technology. IEEE Trans. Big Data 6(2), 369–381 (2016)

    Article  Google Scholar 

  16. Zečević, P., et al.: AXS: a framework for fast astronomical data processing based on Apache Spark. Astron. J. 158(1), 37 (2019)

    Article  Google Scholar 

  17. Williams, B.F., et al.: Reducing and analyzing the PHAT survey with the cloud. Astrophys. J. Suppl. Ser. 236(1), 4 (2018)

    Article  Google Scholar 

  18. Araya, M., et al.: JOVIAL: notebook-based astronomical data analysis in the cloud. Astron. Comput. 25, 110–117 (2018)

    Article  Google Scholar 

  19. Yedida, R., Saha, S., Prashanth, T.: LipschitzLR: using theoretically computed adaptive learning rates for fast convergence. Appl. Intell. 51(3), 1460–1478 (2020). https://doi.org/10.1007/s10489-020-01892-0

    Article  Google Scholar 

  20. Spark Homepage. https://spark.apache.org/. Accessed 29 Jan 2021

  21. PySpark Homepage. https://spark.apache.org/docs/latest/api/python/index.html. Accessed 29 Jan 2021

  22. elephas Homepage. https://github.com/maxpumperla/elephas

  23. Pence, W.D., et al.: Definition of the flexible image transport system (fits), version 3.0. Astron. Astrophys. 524, A42 (2010)

    Article  Google Scholar 

  24. SDSS Homepage. https://sdss.org. Accessed 29 Jan 2021

  25. VIPERS Homepage. http://vipers.inaf.it/. Accessed 29 Jan 2021

  26. KIDS Homepage. http://kids.strw.leidenuniv.nl/. Accessed 29 Jan 2021

  27. casjob Homepage. https://skyserver.sdss.org/casjobs/. Accessed 29 Jan 2021

  28. AWS Homepage. https://aws.amazon.com/. Accessed 29 Jan 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sen, S., Saha, S., Chakraborty, P., Singh, K.P. (2021). Implementation of Neural Network Regression Model for Faster Redshift Analysis on Cloud-Based Spark Platform. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2021. Lecture Notes in Computer Science(), vol 12799. Springer, Cham. https://doi.org/10.1007/978-3-030-79463-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79463-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79462-0

  • Online ISBN: 978-3-030-79463-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics