Skip to main content

New Approximation Algorithms for the Heterogeneous Weighted Delivery Problem

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2021)

Abstract

We study the heterogeneous weighted delivery (HWD) problem introduced in [Bärtschi et al., STACS’17] where k heterogeneous mobile agents (e.g., robots, vehicles, etc.), initially positioned on vertices of an n-vertex edge-weighted graph G, have to deliver m messages. Each message is initially placed on a source vertex of G and needs to be delivered to a target vertex of G. Each agent can move along the edges of G and carry at most one message at any time. Each agent has a rate of energy consumption per unit of traveled distance and the goal is that of delivering all messages using the minimum overall amount of energy.

This problem has been shown to be NP-hard even when \(k=1\), and is \(4\rho \)-approximable where \(\rho \) is the ratio between the maximum and minimum energy consumption of the agents. In this paper, we provide approximation algorithms with approximation ratios independent of the energy consumption rates. First, we design a polynomial-time 8-approximation algorithm for \(k=O(\sqrt{\log n})\), closing a problem left open in [Bärtschi et al., ATMOS’17]. This algorithm can be turned into a O(k)-approximation algorithm that always runs in polynomial-time, regardless of the values of k. Then, we show that HWD problem is 36-approximable in polynomial-time when each agent has one of two possible consumption rates. Finally, we design a polynomial-time \(\widetilde{O}(\log ^3 n)\)-approximation algorithm for the general case.

This work was partially funded by the grants “Fondo di Ateneo per la Ricerca 2020” from the University of Sassari, and “ALgorithmic aspects of BLOckchain TECHnology” (E89C20000620005) from the University of Rome “Tor Vergata”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(O^*(\cdot )\) notation hides polynomial factors in the size of the instance.

  2. 2.

    The \(\widetilde{O}(f(\cdot ))\) notation is a shorthand for \(O(f(\cdot ) \, \text {poly} \log f(\cdot ) )\).

  3. 3.

    If the agent \(a_i\) is at vertex v, carries no message, and, according to its schedule \(S_i\) shall deliver message \(m_j\), then \(a_i\) moves from v to \(s_j\) via a shortest path first, then picks-up message \(m_j\) from \(s_j\), next moves from \(s_j\) to \(t_j\) via a shortest path, and finally drops-off message \(m_j\) on \(t_j\).

  4. 4.

    Since the edge weights in \(G_1\) (resp. \(G_2\)) satisfy the triangle inequality, we can assume that no vertex appears more than once in \(T_1\) (resp. \(T_2\)).

  5. 5.

    Indeed, we can discard all agents starting from the same vertex, except for one with minimum unit cost (selected arbitrarily in case of ties). We can further consolidate all messages with the same source u into a single “batch” message to be delivered to a new dummy vertex v. The distance from u to v is exactly the sum of the distances from u to the respective destinations of the replaced messages.

References

  1. Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. Theor. Comput. Sci. 810, 2–14 (2020). https://doi.org/10.1016/j.tcs.2017.04.018

    Article  MathSciNet  MATH  Google Scholar 

  2. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Graf, D., Hackfeld, J., Penna, P.: Energy-efficient delivery by heterogeneous mobile agents. In: Vollmer, H., Vallée, B. (eds.) 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany, 8–11 March 2017. LIPIcs, vol. 66, pp. 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.10

  3. Bärtschi, A., Graf, D., Mihalák, M.: Collective fast delivery by energy-efficient agents. In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, Liverpool, UK, 27–31 August 2018. LIPIcs, vol. 117, pp. 56:1–56:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.56

  4. Bärtschi, A., Graf, D., Penna, P.: Truthful mechanisms for delivery with agents. In: D’Angelo, G., Dollevoet, T. (eds.) 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2017, Vienna, Austria, 7–8 September 2017. OASICS, vol. 59, pp. 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/OASIcs.ATMOS.2017.2

  5. Bärtschi, A., Tschager, T.: Energy-efficient fast delivery by mobile agents. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 82–95. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8_8

    Chapter  Google Scholar 

  6. Berman, P., Demaine, E.D., Zadimoghaddam, M.: O(1)-Approximations for maximum movement problems. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 62–74. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-0_6

    Chapter  Google Scholar 

  7. Bilò, D., Disser, Y., Gualà, L., Mihal’ák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_6

    Chapter  Google Scholar 

  8. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Exact and approximate algorithms for movement problems on (special classes of) graphs. Theor. Comput. Sci. 652, 86–101 (2016). https://doi.org/10.1016/j.tcs.2016.09.007

    Article  MathSciNet  MATH  Google Scholar 

  9. Carvalho, I.A., Erlebach, T., Papadopoulos, K.: An efficient algorithm for the fast delivery problem. In: Gąsieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 171–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0_12

    Chapter  Google Scholar 

  10. Chalopin, J., Das, S., Mihal’ák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_9

    Chapter  Google Scholar 

  11. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_36

    Chapter  Google Scholar 

  12. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic approximation algorithms for group Steiner trees and k-median. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 114–123. Association for Computing Machinery, New York (1998). https://doi.org/10.1145/276698.276719

  13. Demaine, E.D., et al.: Minimizing movement. ACM Trans. Algorithms 5(3), 30:1–30:30 (2009). https://doi.org/10.1145/1541885.1541891

  14. Gørtz, I.L., Molinaro, M., Nagarajan, V., Ravi, R.: Capacitated Vehicle Routing with Non-uniform Speeds. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 235–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20807-2_19

    Chapter  Google Scholar 

  15. Malik, W.A., Rathinam, S., Darbha, S.: An approximation algorithm for a symmetric generalized multiple depot, multiple travelling salesman problem. Oper. Res. Lett. 35(6), 747–753 (2007). https://doi.org/10.1016/j.orl.2007.02.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple TSP with a fixed number of depots. Informs J. Comput. 27(4), 636–645 (2015). https://doi.org/10.1287/ijoc.2015.0650

    Article  MathSciNet  MATH  Google Scholar 

  17. Yadlapalli, S., Rathinam, S., Darbha, S.: 3-approximation algorithm for a two depot, heterogeneous traveling salesman problem. Optim. Lett. 6(1), 141–152 (2012). https://doi.org/10.1007/s11590-010-0256-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilò, D., Gualà, L., Leucci, S., Proietti, G., Rossi, M. (2021). New Approximation Algorithms for the Heterogeneous Weighted Delivery Problem. In: Jurdziński, T., Schmid, S. (eds) Structural Information and Communication Complexity. SIROCCO 2021. Lecture Notes in Computer Science(), vol 12810. Springer, Cham. https://doi.org/10.1007/978-3-030-79527-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79527-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79526-9

  • Online ISBN: 978-3-030-79527-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics