Abstract
Multimodal optimization is a relatively young term for the aim of finding several solutions of a complex objective function simultaneously. This has been attempted under the denomination ‘niching’ since the 1970s, transferring ideas from biological evolution in a very loose fashion. In this chapter we more formally define it, and then highlight its most important perspectives: how do we measure what is good? On what problems do we measure it? Which type of algorithms may be effectively employed for multimodal optimization? How do they relate to each other? Competitions at two major evolutionary computation conferences have driven algorithm development in recent years. We therefore report, in a concise fashion, what we have learned from competition results and give an outlook on interesting future developments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Note that, due to space limitation on graphs, the SSGA-DMRTS-DDC and SSGA-DMRTS-DDC-F entries are denoted as SSGA-D and SSGA-DF accordingly.
References
Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Springer, Berlin (2015)
Törn, A., Žilinskas, A.: Global Optimization. Springer, Berlin (1989)
Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge university press, Cambridge (2004)
Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications, Vol. 15. Siam (2013)
Li, J.-P., Balazs, M.E., Parks, G.T., John Clarkson, P.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)
Preuss, M., Wessing, S., Rudolph, G., Sadowski, G.: Solving phase equilibrium problems by means of avoidance-based multiobjectivization. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, Springer Handbooks, pp. 1159–1171. Springer, Berlin (2015)
Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization - a survey of the state-of-the-art. Swarm Evol. Comput. 1(2), 71–88 (2011)
Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.P.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 21(4), 518–538 (2017)
Wessing, S.: Two-stage methods for multimodal optimization. Ph.D. thesis, Technische Universität Dortmund (2015)
Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. Technical report, RMIT University, Evolutionary Computation and Machine Learning Group, Australia (2013)
Preuss, M., Wessing, S.: Measuring multimodal optimization solution sets with a view to multiobjective techniques. In: Emmerich, M., Deutz, A., Schütze, O., Bäck, T., Tantar, E., Tantar, A.-A., Moral, P.D., Legrand, P., Bouvry, P., Coello, C.A. (eds.) EVOLVE – A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, volume 227 of Advances in Intelligent Systems and Computing, pp. 123–137. Springer (2013)
Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A.H., Trautmann, H., Emmerich, M.T.M.: Search dynamics on multimodal multiobjective problems. Evol. Comput. 27(4), 577–609 (2019)
Deb, K.: Genetic Algorithms in multimodal function optimization (Master thesis and TCGA Report No. 89002). Ph.D. thesis, Tuscaloosa: University of Alabama, The Clearinghouse for Genetic Algorithms (1989)
Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic algorithms. In: Männer, R., Manderick, B. (eds.) PPSN 2, Amsterdam (1992). Elsevier Science Publishers, B. V
Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE Trans. Evol. Comput. 10(5), 590–603 (2006)
Rönkkönen, J., Li, X., Kyrki, V., Lampinen, J.: A framework for generating tunable test functions for multimodal optimization. Soft. Comput. 15(9), 1689–1706 (2011)
Singh, G., Deb, K.: Comparisons of multi-modal optimization algorithms based on evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference 2006 (GECCO’06), pp. 1305–1312, Washington, USA (2006)
Qu, B.-Y., Suganthan, P.N.: Novel multimodal problems and differential evolution with ensemble of restricted tournament selection. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7 (2010)
Wessing, S.: The multiple peaks model 2. Algorithm Engineering Report TR15-2-001. Technische Universität Dortmund (2015). https://ls11-www.cs.uni-dortmund.de/_media/techreports/tr15-01.pdf
Preuss, M., Lasarczyk, C.: On the importance of information speed in structured populations. In: Parallel Problem Solving from Nature - PPSN VIII. Lecture Notes in Computer Science, vol. 3242, pp. 91–100. Springer (2004)
Ahrari, A., Deb, K.: A novel class of test problems for performance evaluation of niching methods. IEEE Trans. Evol. Comput. 22(6), 909–919 (2018)
Deb, K., Saha, A.: Multimodal optimization using a bi-objective evolutionary algorithm. Evol. Comput. 20(1), 27–62 (2012)
Alyahya, K., Doherty, K., Akman, Q., Fieldsend, J.: Robust multi-modal optimisation. In: Proceedings of the 2018 Conference on Genetic and Evolutionary Computation (GECCO’18), pp. 1783–1790 (2018)
Cavicchio, D.J.: Adapting Search Using Simulated Evolution. Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan (1970)
Jong, K.A.De.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan (1975)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Michigan (1975)
Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic algorithms and their application, pp. 41–49. Lawrence Erlbaum Associates, Inc. (1987)
Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco, CA (1995)
Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the 3rd IEEE International Conference on Evolutionary Computation, pp. 798–803 (1996)
Shir, O.M.: Niching in evolution strategies. In: Beyer, H.-G. (ed.) GECCO ’05: Proceedings of the 2005 conference on Genetic and Evolutionary Computation, pp. 865–872, New York, NY, USA. ACM Press (2005)
Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive recombination in \((\mu \)\(+/,\)\(\lambda )\)-EA on multimodal fitness landscapes. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO ’05, pp. 865–872. ACM (2005)
Preuss, M.: Niching prospects. Bioinspired Optimization Methods and their Applications, pp. 25–34 (2006)
Törn, A., Viitanen, S.: Topographical global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, Princeton Series in Computer Sciences, pp. 384–398. Princeton University Press (1992)
Ursem, R.K.: Multinational evolutionary algorithms. In: Angeline, P.J. (ed.) Proceedings of the Congress of Evolutionary Computation (CEC 99), vol. 3, pp. 1633–1640. IEEE Press (1999)
Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by means of a topological species conservation algorithm. IEEE Trans. Evol. Comput. 14(6), 842–864 (2010)
Maree, S.C., Alderliesten, T., Thierens, D., Bosman, P.A.N.: Real-valued evolutionary multi-modal optimization driven by hill-valley clustering. In: Aguirre, H.E., Takadama, K. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15–19, pp. 857–864. ACM (2018)
Wessing, S., Rudolph, G., Preuss, M.: Assessing basin identification methods for locating multiple optima. In: Advances in Stochastic and Deterministic Global Optimization, pp. 53–70. Springer, Berlin (2016)
Mahfoud, S.W.: A comparison of parallel and sequential niching methods. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 136–143, San Francisco, CA, USA (1995). Morgan Kaufmann Publishers Inc
Li, X.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)
Li, X.: Developing niching algorithms in particle swarm optimization. In: Panigrahi, B.K., Shi, Y., Lim, M.-H. (eds.) Handbook of Swarm Intelligence. Adaptation, Learning, and Optimization, vol. 8, pp. 67–88. Springer, Berlin (2011)
Epitropakis, M.G., Plagianakos, V.P., Vrahatis, M.N.: Finding multiple global optima exploiting differential evolution’s niching capability. In: IEEE Symposium on Differential Evolution (SDE) (2011)
Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1(2), 101–125 (1993). June
Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, 3rd edn. Wiley, New York (2013)
Ahrari, A., Deb, K., Preuss, M.: Multimodal optimization by covariance matrix self-adaptation evolution strategy with repelling subpopulations. Evol. Comput. 25(3), 439–471 (2017)
Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)
Shir, O.M., Emmerich, M., Bäck, T.: Adaptive niche radii and niche shapes approaches for niching with the cma-es. Evol. Comput. 18(1), 97–126 (2010)
Beyer, H.-G., Sendhoff, B.: Covariance matrix adaptation revisited – the CMSA evolution strategy. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) Parallel Problem Solving from Nature – PPSN X, pp. 123–132. Springer, Berlin (2008)
Preuss, M.: Improved topological niching for real-valued global optimization. In: Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 7248, pp. 386–395. Springer (2012)
Schwartz, B.: The Paradox of Choice: Why More Is Less. Harper Perennial (2004)
Islam, Md.J., Li, X., Deb, K.: Multimodal truss structure design using bilevel and niching based evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp. 274–281, New York, NY, USA, Association for Computing Machinery (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Preuss, M., Epitropakis, M., Li, X., Fieldsend, J.E. (2021). Multimodal Optimization: Formulation, Heuristics, and a Decade of Advances. In: Preuss, M., Epitropakis, M.G., Li, X., Fieldsend, J.E. (eds) Metaheuristics for Finding Multiple Solutions. Natural Computing Series. Springer, Cham. https://doi.org/10.1007/978-3-030-79553-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-79553-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79552-8
Online ISBN: 978-3-030-79553-5
eBook Packages: Computer ScienceComputer Science (R0)