Skip to main content

Reduced Models of Gene Regulatory Networks: Visualising Multi-modal Landscapes

  • Chapter
  • First Online:
Metaheuristics for Finding Multiple Solutions

Part of the book series: Natural Computing Series ((NCS))

Abstract

We present a prototypical multimodal optimisation problem from the systems biology domain—tuning the kinetic parameters of a reduced order gene regulatory network (GRN) model to obtain optimal fits to gene expression timeseries. After introducing the problem, the chapter then illustrates different fitness landscapes of the GRN parameter fitting problem using various statistical plots of landscape features, along with local optima networks (LONs)—graphs representing local optima (modes), their basin sizes and connectivity across the landscape. In a typical multimodal optimisation process, the problem owners get presented with a putative list of modal solutions from which to verify and select a design. We argue in this chapter that it is often useful to present a characterisation of the search landscape itself along with the list of modal solutions. The characterisation of the search landscape can provide insight into the domain, and may guide, for instance, problem reformulations, or the final mode selection based on broader features than simply mode performance, e.g. basin size if robustness of modes is a concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This definition of vertex has been extended to account for neutrality in the search space [32].

  2. 2.

    All figures are available in high quality under http://pop-project.ex.ac.uk/grn_lons.html.

References

  1. Adams, R., Clark, A., Yamaguchi, A., Hanlon, N., Tsorman, N., Ali, S., Lebedeva, G., Goltsov, A., Sorokin, A.A., Akman, O.E., Troein, C., Millar, A.J., Goryanin, I., Gilmore, S.: SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology. Bioinformatics 29(5), 664–665 (2013)

    Article  Google Scholar 

  2. Akman, O.E., Fieldsend, J.E.: Multi-objective optimisation of gene regulatory networks: insights from a boolean circadian clock model. In: Proceedings of the 12th International Conference on Bioinformatics and Computational Biology, vol. 70, pp. 149–162 (2020)

    Google Scholar 

  3. Akman, O.E., Locke, J.C.W., Tang, S., Carré, I., Millar, A.J., Rand, D.A.: Isoform switching facilitates period control in the Neurospora crassa circadian clock. Mol. Syst. Biol. 4, 64 (2008)

    Article  Google Scholar 

  4. Akman, O.E., Rand, D.A., Brown, P.E., Millar, A.J.: Robustness from flexibility in the fungal circadian clock. BMC Syst. Biol. 4, 88 (2010)

    Article  Google Scholar 

  5. Akman, O.E., Watterson, S., Parton, A., Binns, N., Millar, A.J., Ghazal, P.: Digital clocks: simple Boolean models can quantitatively describe circadian systems. J. Roy. Soc. Interface 9(74), 2365–2382 (2012)

    Article  Google Scholar 

  6. Alyahya, K.: Fitness landscape analysis of a class of NP-hard problems. Ph.D. thesis, University of Birmingham, July (2016)

    Google Scholar 

  7. Alyahya, K., Rowe, J.E.: Simple random sampling estimation of the number of local optima. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) Parallel Problem Solving from Nature - PPSN XIV, pp. 932–941. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  8. Alyahya, K., Rowe, J.E.: Landscape analysis of a class of NP-hard binary packing problems. Evol. Comput. 27(1), 47–73 (2019)

    Article  Google Scholar 

  9. Banga, J.R.: Optimization in computational systems biology. BMC Syst. Biol. 2, 47 (2008)

    Article  Google Scholar 

  10. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm configuration of cma-es with limited budget. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp. 681–688. ACM, New York, NY, USA (2017)

    Google Scholar 

  11. Breukelaar, R., Bäck, T.: Using a genetic algorithm to evolve behavior in multi dimensional cellular automata: emergence of behavior. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO ’05, pp. 107–114. ACM, New York, NY, USA (2005)

    Google Scholar 

  12. Daniels, B.C., Chen, Y.-J., Sethna, J.P., Gutenkunst, R.N., Myers, C.R.: Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 19(4), 389–395 (2008). Protein technologies/Systems biology

    Google Scholar 

  13. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002). PMID: 11911796

    Article  MathSciNet  Google Scholar 

  14. Dee, D.P., Ghil, M.: Boolean difference equations, i: formulation and dynamic behavior. SIAM J. Appl. Math. 44(1), 111–126 (1984)

    Article  MathSciNet  Google Scholar 

  15. Doherty, K., Alyahya, K., Akman, O.E., Fieldsend, J.E.: Optimisation and landscape analysis of computational biology models: a case study. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, pp. 1644–1651. ACM, New York, NY, USA (2017)

    Google Scholar 

  16. Doye, J.P.K.: Network topology of a potential energy landscape: a static scale-free network. Phys. Rev. Lett. 88, 23:238701 (2002)

    Article  Google Scholar 

  17. Foo, M., Bates, D.G., Akman, O.E.: A simplified modelling framework facilitates more complex representations of plant circadian clocks. PLoS Comput. Biol. 16(3), e1007671 (2020)

    Google Scholar 

  18. Ghil, M., Zaliapin, I., Coluzzi, B.: Boolean delay equations: a simple way of looking at complex systems. Phys. D: Nonlinear Phenom. 237(23), 2967–2986 (2008)

    Article  MathSciNet  Google Scholar 

  19. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3(10), e189 (2007)

    Google Scholar 

  20. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  21. Hoos, H.H., StĂĽtzle, T.: Stochastic Local Search: Foundations and Applications. Elsevier (2004)

    Google Scholar 

  22. Kauffman, S., Weinberger, E.: The NK model of rugged fitness landscapes and its application to the maturation of the immune response. J. Theor. Biol. 141(2), 211–245 (1989)

    Article  Google Scholar 

  23. Leloup, J.C., Gonze, D., Goldbeter, A.: Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14(6), 433–448 (1999)

    Article  Google Scholar 

  24. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)

    Google Scholar 

  25. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) Evolutionary Computation in Combinatorial Optimization, pp. 233–248. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  26. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes, pp. 233–262. Springer, Berlin Heidelberg, Berlin, Heidelberg (2014)

    Chapter  Google Scholar 

  27. Öktem, H., Pearson, R., Egiazarian, K.: An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean delay equations). Chaos 13(4), 1167–1174 (2003)

    Article  MathSciNet  Google Scholar 

  28. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Araujo, S., Paz, C. (eds.) Recent Advances in Intelligent Engineering Systems, vol. 378, pp. 161–191. Springer, Berlin (2012)

    Chapter  Google Scholar 

  29. Stillinger, F.H., Weber, T.A.: Packing structures and transitions in liquids and solids. Science 225(4666), 983–989 (1984)

    Article  Google Scholar 

  30. Tokuda, I.T., Akman, O.E., Locke, J.C.: Reducing the complexity of mathematical models for the plant circadian clock by distributed delays. J. Theor. Biol. 463, 155–166 (2019)

    Article  MathSciNet  Google Scholar 

  31. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) Artificial Evolution, pp. 49–60. Springer, Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  32. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

    Article  Google Scholar 

  33. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)

    Article  MathSciNet  Google Scholar 

  34. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of 6th International Congress on Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Engineering and Physical Sciences Research Council [grant number EP/N017846/1]. We would like to acknowledge the use of the University of Exeter High-Performance Computing (HPC) facility in carrying out this work. The authors would like to thank SĂ©bastien VĂ©rel and Gabriela Ochoa for providing inspirational invited talks on LONs at their institution during this grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khulood Alyahya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alyahya, K., Doherty, K., Akman, O.E., Fieldsend, J.E. (2021). Reduced Models of Gene Regulatory Networks: Visualising Multi-modal Landscapes. In: Preuss, M., Epitropakis, M.G., Li, X., Fieldsend, J.E. (eds) Metaheuristics for Finding Multiple Solutions. Natural Computing Series. Springer, Cham. https://doi.org/10.1007/978-3-030-79553-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79553-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79552-8

  • Online ISBN: 978-3-030-79553-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics