Skip to main content

How Can We Construct Reversible Turing Machines in a Very Simple Reversible Cellular Automaton?

  • Conference paper
  • First Online:
Reversible Computation (RC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12805))

Included in the following conference series:

Abstract

A reversible cellular automaton (RCA) is an abstract spatiotemporal model of a reversible world. Using the framework of an RCA, we study the problem of how we can elegantly compose reversible computers from simple reversible microscopic operations. The CA model used here is an elementary triangular partitioned CA (ETPCA), whose spatial configurations evolve according to an extremely simple local transition function. We focus on the particular reversible ETPCA No. 0347, where 0347 is an ID number in the class of 256 ETPCAs. Based on our past studies, we explain that reversible Turing machines (RTMs) can be constructed in a systematic and hierarchical manner in this cellular space. Though ETPCA 0347 is an artificial CA model, this method gives a new vista to find a pathway from a reversible microscopic law to reversible computers. In particular, we shall see that RTMs can be easily realized in a unique method by using a reversible logic element with memory (RLEM) in the intermediate step of the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973). https://doi.org/10.1147/rd.176.0525

    Article  MathSciNet  MATH  Google Scholar 

  2. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982). https://doi.org/10.1007/BF01857727

  3. Imai, K., Morita, K.: A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theoret. Comput. Sci. 231, 181–191 (2000). https://doi.org/10.1016/S0304-3975(99)00099--7

  4. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48, 149–182 (1994). https://doi.org/10.1016/S0022-0000(05)80025-X

  5. Lee, J., Peper, F., Adachi, S., Morita, K.: An asynchronous cellular automaton implementing 2-state 2-input 2-output reversed-twin reversible elements. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 67–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4_9

    Chapter  MATH  Google Scholar 

  6. Morita, K.: Finding a pathway from reversible microscopic laws to reversible computers. Int. J. Unconventional Comput. 13, 203–213 (2017)

    Google Scholar 

  7. Morita, K.: Reversible world : Data set for simulating a reversible elementary triangular partitioned cellular automaton on Golly. Hiroshima University Institutional Repository. http://ir.lib.hiroshima-u.ac.jp/00042655 (2017)

  8. Morita, K.: Theory of Reversible Computing. Springer, Tokyo (2017). https://doi.org/10.1007/978-4-431-56606-9

  9. Morita, K.: A universal non-conservative reversible elementary triangular partitioned cellular automaton that shows complex behavior. Nat. Comput. 18(3), 413–428 (2017). https://doi.org/10.1007/s11047-017-9655-9

    Article  MathSciNet  Google Scholar 

  10. Morita, K.: Constructing reversible Turing machines in a reversible and conservative elementary triangular cellular automaton. J. Automata, Lang. Combinatorics (to appear)

    Google Scholar 

  11. Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE E72, 758–762 (1989). http://ir.lib.hiroshima-u.ac.jp/00048449

  12. Morita, K., Ogiro, T., Alhazov, A., Tanizawa, T.: Non-degenerate 2-state reversible logic elements with three or more symbols are all universal. J. Multiple-Valued Logic Soft Comput. 18, 37–54 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Morita, Kenichi, Suyama, Rei: Compact realization of reversible turing machines by 2-state reversible logic elements. In: Ibarra, Oscar H.., Kari, Lila, Kopecki, Steffen (eds.) UCNC 2014. LNCS, vol. 8553, pp. 280–292. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08123-6_23

    Chapter  Google Scholar 

  14. Mukai, Y., Ogiro, T., Morita, K.: Universality problems on reversible logic elements with 1-bit memory. Int. J. Unconventional Comput. 10, 353–373 (2014)

    Google Scholar 

  15. Trevorrow, A., Rokicki, T., Hutton, T., et al.: Golly: an open source, cross-platform application for exploring Conway’s Game of Life and other cellular automata (2005). http://golly.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morita, K. (2021). How Can We Construct Reversible Turing Machines in a Very Simple Reversible Cellular Automaton?. In: Yamashita, S., Yokoyama, T. (eds) Reversible Computation. RC 2021. Lecture Notes in Computer Science(), vol 12805. Springer, Cham. https://doi.org/10.1007/978-3-030-79837-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79837-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79836-9

  • Online ISBN: 978-3-030-79837-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics