Skip to main content

Reversibility and Predictions

  • Conference paper
  • First Online:
Reversible Computation (RC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12805))

Included in the following conference series:

Abstract

This paper analyses the introduction of a non-reversible mechanism in a reversible calculus (called \(\varOmega \rho \pi \)), intended to be used as an oracle which contains persistent memories of previously reversed computation. As a second step, we introduce the notion of weak causal consistency which relaxes the classical causal consistency by allowing the backward semantics not to revert to a previous state, but to a state related to a previous state and we show that \(\varOmega \rho \pi \) is weakly causally consistent. We finally present a practical application of this calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, actually, it still has some sort of causal consistency, in that backward semantics undo the latter messages first. Therefore it is not possible to have an effect without its cause, but the resulting state is not reachable without backward sequence.

  2. 2.

    We could generalize this rule by relaxing the constraint that \(Q\precsim P\), by introducing a binary relation of processes \(\mathcal {R}\) as parameter and requiring that \(\langle P, Q\rangle \in \mathcal {R}\), and then instantiating our semantics with \(\precsim \) as \(\mathcal {R}\) in this paper. However, the implications of such generalization are not trivial, in particular with respect to the weak causal consistency result presented latter in this paper. Therefore, for the sake of simplicity, we restrict ourself to the restricted definition.

  3. 3.

    Notice that, due to the pending \(\langle k_5^1, \tilde{k_5}\rangle : c\langle P_1\rangle \) that remains after the choice, if \(k_1\) reduces at this point, when reading \(c\) it could actually receive from this pending process. For the sake of simplicity, we ignore this, since that garbage process is cleaned up when \(k_2\) returns in its initial state.

  4. 4.

    The proof is trivial. Due to length constraints, we omit it.

References

  1. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1990, pp. 81–94 (1989). https://doi.org/10.1145/96709.96717

  2. Berry, G., Boudol, G.: The chemical abstract machine. Theoret. Comput. Sci. 96(1), 217–248 (1992). https://doi.org/10.1016/0304-3975(92)90185-I

    Article  MathSciNet  MATH  Google Scholar 

  3. Caires, L., Ferreira, C., Vieira, H.: A process calculus analysis of compensations. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00945-7_6

    Chapter  Google Scholar 

  4. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26

    Chapter  Google Scholar 

  5. Kuhn, S., Aman, B., Ciobanu, G., Philippou, A., Psara, K., Ulidowski, I.: Reversibility in chemical reactions. In: Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.) RC 2020. LNCS, vol. 12070, pp. 151–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47361-7_7

    Chapter  Google Scholar 

  6. Kuhn, S., Ulidowski, I.: A Calculus for Local Reversibility (2016). https://core.ac.uk/display/191241654

  7. Kuhn, S., Ulidowski, I.: Local reversibility in a Calculus of Covalent Bonding (2017). https://core.ac.uk/display/328692337?source=3. Publisher: ‘Elsevier BV’

  8. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_21

    Chapter  Google Scholar 

  9. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_20

    Chapter  Google Scholar 

  10. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_33

    Chapter  Google Scholar 

  11. Mezzina, C.A.: Reversing execution in Higher-Order Pi. Theses, Université de Grenoble, February 2012. https://tel.archives-ouvertes.fr/tel-00683964

  12. Mezzina, C.A.: On reversibility and broadcast. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 67–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_5

    Chapter  Google Scholar 

  13. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

    Book  MATH  Google Scholar 

  14. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance in large parallel systems. Clust. Comput. 17(2), 303–313 (2013). https://doi.org/10.1007/s10586-013-0277-4

    Article  Google Scholar 

  15. Philippou, A., Psara, K.: Reversible computation in petri nets. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_6

    Chapter  MATH  Google Scholar 

  16. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18

    Chapter  MATH  Google Scholar 

  17. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511777110

  18. Vassor, M., Stefani, J.-B.: Checkpoint/rollback vs causally-consistent reversibility. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vassor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vassor, M. (2021). Reversibility and Predictions. In: Yamashita, S., Yokoyama, T. (eds) Reversible Computation. RC 2021. Lecture Notes in Computer Science(), vol 12805. Springer, Cham. https://doi.org/10.1007/978-3-030-79837-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79837-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79836-9

  • Online ISBN: 978-3-030-79837-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics