Skip to main content

Variational Quantum Eigensolver and Its Applications

  • Conference paper
  • First Online:
Reversible Computation (RC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12805))

Included in the following conference series:

  • 587 Accesses

Abstract

The Variational Quantum Eigensolver (VQE) algorithm is attracting much attention to utilize current limited quantum devices. The VQE algorithm requires a quantum circuit with parameters, called a parameterized quantum circuit (PQC), to prepare a quantum state, and the quantum state is used to calculate the expectation value of a given Hamiltonian. Creating sophisticated PQCs is important from the perspective of the convergence speed. Thus, we propose problem-specific PQCs of the VQE algorithm for optimization problems. Our idea is to dynamically create a PQC that reflects the constraints of an optimization problem. With a problem-specific PQC, it is possible to reduce a search space by restricting unitary transformations in favor of the VQE algorithm. As a result, we can speed up the convergence of the VQE algorithm. Experimental results show that the convergence speed of the proposed PQCs is significantly faster than that of the state-of-the-art PQC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005). https://doi.org/10.1126/science.1113479, https://science.sciencemag.org/content/309/5741/1704

  2. Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using CVaR. Quantum 4, 256 (2020). https://doi.org/10.22331/q-2020-04-20-256

  3. Cerezo, M., et al.: Variational quantum algorithms. arXiv preprint arXiv:2012.09265 (2020)

  4. Diker, F.: Deterministic construction of arbitrary w states with quadratically increasing number of two-qubit gates. arXiv preprint arXiv:1606.09290 (2016)

  5. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC 1996: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219, July 1996

    Google Scholar 

  7. Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.: From the quantum approximate optimization algorithm to a quantum alternating operator Ansatz. Algorithms 12(2) (2019). https://doi.org/10.3390/a12020034, https://www.mdpi.com/1999-4893/12/2/34

  8. Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  Google Scholar 

  9. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear systems, vol. 49. NBS Washington, DC (1952)

    Google Scholar 

  10. Heya, K., Suzuki, Y., Nakamura, Y., Fujii, K.: Variational quantum gate optimization. arXiv preprint arXiv:1810.12745 (2018)

  11. Higgott, O., Wang, D., Brierley, S.: Variational quantum computation of excited states. Quantum 3, 156 (2019). https://doi.org/10.22331/q-2019-07-01-156

  12. Kandala, A., et al.: Hardware-efficient variational quantum Eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  Google Scholar 

  13. Khatri, S., LaRose, R., Poremba, A., Cincio, L., Sornborger, A.T., Coles, P.J.: Quantum-assisted quantum compiling. Quantum 3, 140 (2019). https://doi.org/10.22331/q-2019-05-13-140, https://doi.org/10.22331/q-2019-05-13-140

  14. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  15. Matsuo, A., Suzuki, Y., Yamashita, S.: Problem-specific parameterized quantum circuits of the VQE algorithm for optimization problems. arXiv preprint arXiv:2006.05643 (2020)

  16. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016)

    Google Scholar 

  17. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, (2018). https://doi.org/10.1103/PhysRevA.98.032309, https://link.aps.org/doi/10.1103/PhysRevA.98.032309

  18. Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018). https://doi.org/10.1088/2058-9565/aab822, https://doi.org/10.1088/2058-9565/aab822

  19. Nakanishi, K.M., Fujii, K., Todo, S.: Sequential minimal optimization for quantum-classical hybrid algorithms. Phys. Rev. Res. 2(4), 043158 (2020)

    Google Scholar 

  20. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

  21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary edn. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  22. Parrish, R.M., Hohenstein, E.G., McMahon, P.L., Martínez, T.J.: Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett. 122(23), 230401 (2019)

    Google Scholar 

  23. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014). https://doi.org/10.1038/ncomms5213

  24. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964). https://doi.org/10.1093/comjnl/7.2.155

  25. Powell, M.J.D.: A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, pp. 51–67. Springer, Netherlands, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5_4

  26. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  27. Qiskit: Qiskit: An open-source framework for quantum computing. https://www.qiskit.org/

  28. Qiskit-Community: W state 1 multi-qubit systems. https://github.com/Qiskit/qiskit-community-tutorials/blob/master/awards/teach_me_qiskit_2018/w_state/W%20State%201%20-%20Multi-Qubit%20Systems.ipynb. Accessed 30 Apr 2020

  29. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122 (2019). https://doi.org/10.1103/PhysRevLett.122.040504, https://link.aps.org/doi/10.1103/PhysRevLett.122.040504

  30. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172

  31. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

    Article  MathSciNet  Google Scholar 

  32. Wang, D., Higgott, O., Brierley, S.: Accelerated variational quantum Eigensolver. Phys. Rev. Lett. 122 (2019). https://doi.org/10.1103/PhysRevLett.122.140504, https://link.aps.org/doi/10.1103/PhysRevLett.122.140504

  33. Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for maxcut: a fermionic view (2017). https://doi.org/10.1103/PhysRevA.97.022304

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Matsuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsuo, A. (2021). Variational Quantum Eigensolver and Its Applications. In: Yamashita, S., Yokoyama, T. (eds) Reversible Computation. RC 2021. Lecture Notes in Computer Science(), vol 12805. Springer, Cham. https://doi.org/10.1007/978-3-030-79837-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79837-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79836-9

  • Online ISBN: 978-3-030-79837-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics