Skip to main content

Relaxed and Approximate Graph Realizations

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12757))

Included in the following conference series:

Abstract

A network realization problem involves a given specification \(\pi \) for some network parameters (such as vertex degrees or inter-vertex distances), and requires constructing a network G that satisfies \(\pi \), if possible. In many settings, it may be difficult or impossible to come up with a precise realization (e.g., the specification data might be inaccurate, or the reconstruction problem might be computationally infeasible). In this expository paper, we review various alternative approaches for coping with these difficulties by relaxing the requirements, discuss the resulting problems and illustrate some (precise or approximate) solutions.

Supported in part by a US-Israel BSF grant (2018043).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, P., Nikolayevsky, Y.: Planar bipartite biregular degree sequences. Discr. Math. 342, 433–440 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discr. Math. 136, 3–20 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpers, A., Gritzmann, P.: Reconstructing binary matrices under window constraints from their row and column sums. Fundamenta Informaticae 155(4), 321–340 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpers, A., Gritzmann, P.: Dynamic discrete tomography. Inverse Probl. 34(3), 034003 (2018)

    Google Scholar 

  5. Alpers, A., Gritzmann, P.: On double-resolution imaging and discrete tomography. SIAM J. Discr. Math. 32, 1369–1399 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Althöfer, I.: On optimal realizations of finite metric spaces by graphs. Discret. Comput. Geom. 3, 103–122 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anstee, R.: Properties of a class of (0,1)-matrices covering a given matrix. Canad. J. Math. 34, 438–453 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anstee, R.P.: An algorithmic proof of Tutte’s \(f\)-factor theorem. J. Algorithms 6(1), 112–131 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baldisserri, A.: Buneman’s theorem for trees with exactly n vertices. CoRR (2014)

    Google Scholar 

  10. Bandelt, H.: Recognition of tree metrics. SIAM J. Discr. Math. 3, 1–6 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: The generalized microscopic image reconstruction problem. In: 30th ISAAC, volume 149 of LIPIcs, pp. 42:1–42:15 (2019)

    Google Scholar 

  12. Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Efficiently realizing interval sequences. SIAM J. Discr. Math. 34(4), 2318–2337 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bar-Noy, A., Peleg, D., Perry, M., Rawitz, D.: Composed degree-distance realizations of graphs. In: 32nd IWOCA (2021)

    Google Scholar 

  14. Bar-Noy, A., Peleg, D., Perry, M., Rawitz, D., Schwartz, N. L.: Distance realization approximations. In: preparation (2021)

    Google Scholar 

  15. Battaglino, D., Frosini, A., Rinaldi, S.: A decomposition theorem for homogeneous sets with respect to diamond probes. Comput. Vis. Image Underst. 117, 319–325 (2013)

    Article  Google Scholar 

  16. Baum, D.A., Smith, S.D.: Tree Thinking: an Introduction to Phylogenetic Biology. Roberts and Company, Greenwood Village, CO (2013)

    Google Scholar 

  17. Blitzstein, J.K., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math. 6(4), 489–522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Broom, M., Cannings, C.: A dynamic network population model with strategic link formation governed by individual preferences. J. Theoret. Biol. 335, 160–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Broom, M., Cannings, C.: Graphic deviation. Discr. Math. 338, 701–711 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Broom, M., Cannings, C.: Game theoretical modelling of a dynamically evolving network i: general target sequences. J. Dyn. Games 335, 285–318 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Burstein, D., Rubin, J.: Sufficient conditions for graphicality of bidegree sequences. SIAM J. Discr. Math. 31, 50–62 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cai, M.-C., Deng, X., Zang, W.: Solution to a problem on degree sequences of graphs. Discr. Math. 219(1–3), 253–257 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Camin, J.H., Sokal, R.R.: A method for deducing branching sequences in phylogeny. Evolution 19, 311–326 (1965)

    Article  Google Scholar 

  24. Chen, W.-K.: On the realization of a (p, s)-digraph with prescribed degrees. J. Franklin Inst. 281(5), 406–422 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chernyak, A.A., Chernyak, Z.A., Tyshkevich, R.I.: On forcibly hereditary \(p\)-graphical sequences. Discr. Math. 64, 111–128 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Chou and H. Frank. Survivable communication networks and the terminal capacity matrix. IEEE Trans. Circ. Theory, CT-17, 192–197 (1970)

    Google Scholar 

  27. Choudum, S.A.: A simple proof of the Erdös-Gallai theorem on graph sequences. Bull. Austral. Math. Soc. 33(1), 67–70 (1991)

    Article  MathSciNet  Google Scholar 

  28. Chung, F.R.K., Garrett, M.W., Graham, R.L., Shallcross, D.: Distance realization problems with applications to internet tomography. J. Comput. Syst. Sci. 63, 432–448 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chungphaisan, V.: Conditions for sequences to be r-graphic. Discr. Math. 7(1–2), 31–39 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cloteaux, B.: Fast sequential creation of random realizations of degree sequences. Internet Math. 12(3), 205–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing trees from distance matrices. Inf. Process. Lett. 30(4), 215–220 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dahl, G., Flatberg, T.: A remark concerning graphical sequences. Discr. Math. 304(1–3), 62–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dahlhaus, E.: Fast parallel recognition of ultrametrics and tree metrics. SIAM J. Discr. Math. 6(4), 523–532 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dress, A.W.M.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. Math. 53, 321–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Erdös, D., Gemulla, R., Terzi, E.: Reconstructing graphs from neighborhood data. ACM Trans. Knowl. Discov. Data 8(4), 23:1–23:22 (2014)

    Google Scholar 

  36. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices [Hungarian]. Matematikai Lapok 11, 264–274 (1960)

    MATH  Google Scholar 

  37. Erdös, P.L., Miklós, I., Toroczkai, Z.: A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. Electr. J. Comb. 17(1) (2010)

    Google Scholar 

  38. Even, G., Medina, M., Patt-Shamir, B.: On-line path computation and function placement in SDNs. Theory Comput. Syst. 63(2), 306–325 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation and function placement in SDNs. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 374–390. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_24

    Chapter  MATH  Google Scholar 

  40. Feder, T., Meyerson, A., Motwani, R., O’Callaghan, L., Panigrahy, R.: Representing graph metrics with fewest edges. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 355–366. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_32

    Chapter  Google Scholar 

  41. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

    Article  Google Scholar 

  42. Fitch, W.M.: Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Biol. 20, 406–416 (1971)

    Article  Google Scholar 

  43. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discr. Math. 5, 25–43 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Frank, A.: Connectivity augmentation problems in network design. In: Mathematical programming: state of the art, pp. 34–63. Univ. Michigan (1994)

    Google Scholar 

  45. Frank, H., Chou, W.: Connectivity considerations in the design of survivable networks. IEEE Trans. Circuit Theory, CT-17, 486–490 (1970)

    Google Scholar 

  46. Frosini, A., Nivat, M.: Binary matrices under the microscope: a tomographical problem. Theor. Comput. Sci. 370(1–3), 201–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Frosini, A., Nivat, M., Rinaldi, S.: Scanning integer matrices by means of two rectangular windows. Theor. Comput. Sci. 406(1–2), 90–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Fulkerson, D.: Zero-one matrices with zero trace. Pacific J. Math. 12, 831–836 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gale, D.: A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  50. Garg, A., Goel, A., Tripathi, A.: Constructive extensions of two results on graphic sequences. Discr. Appl. Math. 159(17), 2170–2174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gontier, N.: Depicting the tree of life: the philosophical and historical roots of evolutionary tree diagrams. Evol. Educ. Outreach 4, 515–538 (2011)

    Article  Google Scholar 

  52. Gritzmann, P., Langfeld, B., Wiegelmann, M.: Uniqueness in discrete tomography: three remarks and a corollary. SIAM J. Discr. Math. 25, 1589–1599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Guo, J., Yin, J.: A variant of Niessen’s problem on degree sequences of graphs. Discr. Math. Theor. Comput. Sci. 16, 287–292 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Gupta, G., Joshi, P., Tripathi, A.: Graphic sequences of trees and a problem of Frobenius. Czechoslovak Math. J. 57, 49–52 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph -I. SIAM J. Appl. Math. 10(3), 496–506 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Quart. Appl. Math. 22, 305–317 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hammer, P.L., Ibaraki, T., Simeone, B.: Threshold sequences. SIAM J. Algebra. Discr. 2(1), 39–49 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1, 275–284 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hartung, S., Nichterlein, A.: Np-hardness and fixed-parameter tractability of realizing degree sequences with directed acyclic graphs. SIAM J. Discr. Math. 29, 1931–1960 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Havel, V.: A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat. 80, 477–480 (1955)

    Article  MATH  Google Scholar 

  61. Heinrich, K., Hell, P., Kirkpatrick, D.G., Liu, G.: A simple existence criterion for \((g < f)\)-factors. Discr. Math. 85, 313–317 (1990)

    Google Scholar 

  62. Hell, P., Kirkpatrick, D.: Linear-time certifying algorithms for near-graphical sequences. Discr. Math. 309(18), 5703–5713 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hennig, W.: Phylogenetic Systematics. Illinois University Press, Champaign (1966)

    Google Scholar 

  64. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms, and Applications. Springer Science & Business Media (2012)

    Google Scholar 

  65. Hulett, H., Will, T.G., Woeginger, G.J.: Multigraph realizations of degree sequences: maximization is easy, minimization is hard. Oper. Res. Lett. 36(5), 594–596 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Jayadev, S.P., Narasimhan, S., Bhatt, N.: Learning conserved networks from flows. Technical report, CoRR (2019). http://arxiv.org/abs/1905.08716

    Google Scholar 

  67. Kelly, P.: A congruence theorem for trees. Pacific J. Math. 7, 961–968 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  68. Kidd, K.K., Sgaramella-Zonta, L.: Phylogenetic analysis: Concepts and methods. American J. Hum. Gen. 23, 235–252 (1971)

    Google Scholar 

  69. Kim, H., Toroczkai, Z., Erdos, P.L., Miklos, I., Szekely, L.A.: Degree-based graph construction. J. Phys. Math. Theor. 42, 1–10 (2009)

    MathSciNet  MATH  Google Scholar 

  70. Kleitman, D.J.: Minimal number of multiple edges in realization of an incidence sequence without loops. SIAM J. Appl. Math. 18(1), 25–28 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  71. Kleitman, D.J., Wang, D.L.: Algorithms for constructing graphs and digraphs with given valences and factors. Discr. Math. 6, 79–88 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  72. Kutiel, G., Rawitz, D.: Service chain placement in SDNs. Discr. Appl. Math. 270, 168–180 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  73. Li, C., McCormick, S., Simchi-Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Oper. Res. Lett. 11, 303–308 (1992)

    Google Scholar 

  74. Lovász, L.: Subgraphs with prescribed valencies. J. Comb. Theory 8, 391–416 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  75. Mihail, M., Vishnoi, N.: On generating graphs with prescribed degree sequences for complex network modeling applications. In: 3rd ARACNE (2002)

    Google Scholar 

  76. Nieminen, J.: Realizing the distance matrix of a graph. J. Inf. Process. Cybern. 12(1/2), 29–31 (1976)

    MathSciNet  MATH  Google Scholar 

  77. Nivat, M.: Sous-ensembles homogénes de z2 et pavages du plan. Comptes Rendus Mathematique 335(1), 83–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  78. O’Neil, P.V.: Ulam’s conjecture and graph reconstructions. Am. Math. Mon. 77, 35–43 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  79. Owens, A., Trent, H.: On determining minimal singularities for the realizations of an incidence sequence. SIAM J. Appl. Math. 15(2), 406–418 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  80. Owens, A.B.: On determining the minimum number of multiple edges for an incidence sequence. SIAM J. Appl. Math. 18(1), 238–240 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  81. Patrinos, A.N., Hakimi, S.L.: The distance matrix of a graph n and its tree realizability. Q. Appl. Math. 30(3), 255 (1972)

    Google Scholar 

  82. Ryser, H.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  83. Schmeichel, E.F., Hakimi, S.L.: On planar graphical degree sequences. SIAM J. Appl. Math. 32, 598–609 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  84. Schuh, R.T., Brower, A.V.: Biological Systematics: Principles and Applications. Cornell University Press (2009)

    Google Scholar 

  85. Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. J. Graph Theory 15(2), 223–231 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  86. Simões-Pereira, J.M.S.: An optimality criterion for graph embeddings of metrics. SIAM J. Discr. Math. 1(2), 223–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  87. Simões-Pereira, J.M.S.: An algorithm and its role in the study of optimal graph realizations of distance matrices. Discr. Math. 79(3), 299–312 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  88. Swofford, D.L., Olsen, G.J.: Phylogeny reconstruction. Mol. Syst. 411–501 (1990)

    Google Scholar 

  89. Tatsuya, A., Nagamochi, H.: Comparison and enumeration of chemical graphs. Comput. Struct. Biotechnol. 5(6), e201302004 (2013)

    Google Scholar 

  90. Tripathi, A., Tyagi, H.: A simple criterion on degree sequences of graphs. Discr. Appl. Math. 156(18), 3513–3517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  91. Tripathi, A., Venugopalan, S., West, D.B.: A short constructive proof of the Erdös-Gallai characterization of graphic lists. Discr. Math. 310(4), 843–844 (2010)

    Article  MATH  Google Scholar 

  92. Tripathi, A., Vijay, S.: A note on a theorem of Erdös & Gallai. Discr. Math. 265(1–3), 417–420 (2003)

    Article  MATH  Google Scholar 

  93. Tutte, W.T.: Graph factors. Combinatorica 1, 79–97 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  94. Tyshkevich, R.: Decomposition of graphical sequences and unigraphs. Discr. Math. 220, 201–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  95. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey I. Cybernetics 23, 734–745 (1987)

    Article  MATH  Google Scholar 

  96. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey II. Cybernetics 24, 137–152 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  97. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey III. Cybernetics 24, 539–548 (1988)

    Google Scholar 

  98. Tyshkevich, R.I., Mel’nikov, O.I., Kotov, V.M.: Graphs and degree sequences: canonical decomposition. Cybernetics 17, 722–727 (1981)

    Article  MATH  Google Scholar 

  99. Ulam, S.: A Collection of Mathematical Problems. Wiley, Hoboken (1960)

    Google Scholar 

  100. Varone, S.C.: A constructive algorithm for realizing a distance matrix. Eur. J. Oper. Res. 174(1), 102–111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  101. Wormald, N.: Models of random regular graphs. Surveys Combin. 267, 239–298 (1999)

    MathSciNet  MATH  Google Scholar 

  102. Zverovich, I.E., Zverovich, V.E.: Contributions to the theory of graphic sequences. Discr. Math. 105(1–3), 293–303 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Peleg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bar-Noy, A., Böhnlein, T., Peleg, D., Perry, M., Rawitz, D. (2021). Relaxed and Approximate Graph Realizations. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79987-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79986-1

  • Online ISBN: 978-3-030-79987-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics