Abstract
The question of characterizing graphs H such that the Vertex Cover problem is solvable in polynomial time in the class of H-free graphs is notoriously difficult and still widely open. We completely solve the corresponding question for a distance-based generalization of vertex cover called distance-k vertex cover, for any positive integer k. In this problem the task is to determine, given a graph G and an integer \(\ell \), whether G contains a set of at most \(\ell \) vertices such that each edge of G is at distance at most k from a vertex in the set. We show that for all \(k \ge 1\) and all graphs H, the distance-k vertex cover problem is solvable in polynomial time in the class of H-free graphs if H is an induced subgraph of \(P_{2k+2} + sP_{\max \{k,2\}}\) for some \(s \ge 0\), and NP-complete otherwise.
This work is supported in part by the Slovenian Research Agency (I0-0035, research program P1-0285 and research projects J1-9110, N1-0102, N1-0160).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph independence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13. Gor’kov. Gos. Univ., Gorki (1982)
Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Appl. Math. 135(1–3), 3–16 (2004). https://doi.org/10.1016/S0166-218X(02)00290-1
Alvarado, J.D., Dantas, S., Rautenbach, D.: Distance \(k\)-domination, distance \(k\)-guarding, and distance \(k\)-vertex cover of maximal outerplanar graphs. Discrete Appl. Math. 194, 154–159 (2015). https://doi.org/10.1016/j.dam.2015.05.010
Bacsó, G., Marx, D., Tuza, Z.: \(H\)-free graphs, independent sets, and subexponential-time algorithms. In: 11th International Symposium on Parameterized and Exact Computation, LIPIcs. Leibniz International Proceedings o Inform., vol. 63, pp. Art. No. 3, 12, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)
Brandstädt, A., Mosca, R.: Maximum weight independent set for \(\ell \)claw-free graphs in polynomial time. Discrete Appl. Math. 237, 57–64 (2018). https://doi.org/10.1016/j.dam.2017.11.029
Brešar, B., Jakovac, M., Katrenič, J., Semanišin, G., Taranenko, A.: On the vertex \(k\)-path cover. Discrete Appl. Math. 161(13–14), 1943–1949 (2013). https://doi.org/10.1016/j.dam.2013.02.024
Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum \(k\)-path vertex cover. Discrete Appl. Math. 159(12), 1189–1195 (2011). https://doi.org/10.1016/j.dam.2011.04.008
Busch, A.H., Dragan, F.F., Sritharan, R.: New min-max theorems for weakly chordal and dually chordal graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6509, pp. 207–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17461-2_17
Camby, E., Schaudt, O.: A new characterization of \(P_k\)-free graphs. Algorithmica 75(1), 205–217 (2015). https://doi.org/10.1007/s00453-015-9989-6
Canales, S., Hernández, G., Martins, M., Matos, I.: Distance domination, guarding and covering of maximal outerplanar graphs. Discrete Appl. Math. 181, 41–49 (2015). https://doi.org/10.1016/j.dam.2014.08.040
Chang, G.J., Nemhauser, G.L.: The \(k\)-domination and \(k\)-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods 5(3), 332–345 (1984)
Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981). https://doi.org/10.1016/0166-218X(81)90013-5
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009
Dvořák, Z.: On distance \(r\)-dominating and \(2r\)-independent sets in sparse graphs. J. Graph Theory 91(2), 162–173 (2019). https://doi.org/10.1002/jgt.22426
Eto, H., Guo, F., Miyano, E.: Distance-\(d\) independent set problems for bipartite and chordal graphs. J. Combin. Optimizat. 27(1), 88–99 (2013). https://doi.org/10.1007/s10878-012-9594-4
Gartland, P., Lokshtanov, D.: Independent set on \(P_k\)-free graphs in quasi-polynomial time. In: 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 613–624, IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00063
Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \(P_6\)-free graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1257–1271, SIAM, Philadelphia, PA (2019). https://doi.org/10.1137/1.9781611975482.77
Horton, J.D., López-Ortiz, A.: On the number of distributed measurement points for network tomography. In: Proceedings of the 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, FL, USA, October 27–29, 2003, pp. 204–209, ACM (2003)
Jaffke, L., Kwon, O.J., Strømme, T.J.F., Telle, J.A.: Mim-width III. Graph powers and generalized distance domination problems. Theoret. Comput. Sci. 796, 216–236 (2019). https://doi.org/10.1016/j.tcs.2019.09.012
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer computations, Proceedings of the Symposium IBM Thomas Journal Watson Research Center, Yorktown Heights, N.Y., 1972, pp. 85–103 (1972)
Katsikarelis, I., Lampis, M., Paschos, V.T.: Structurally parameterized \(d\)-scattered set. In: Brandstädt, A., Köhler, E., Meer, K. (eds.) Graph-Theoretic Concepts in Computer Science, LNCS, vol. 11159, pp. 292–305, Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00256-5_24
Lee, E.: Partitioning a graph into small pieces with applications to path transversal. Math. Program. (1), 1–19 (2018). https://doi.org/10.1007/s10107-018-1255-7
Lemańska, M.: On the minimum vertex \(k\)-path cover of trees. Util. Math. 100, 299–307 (2016)
Lokshantov, D., Vatshelle, M., Villanger, Y.: Independent set in \(P_5\)-free graphs in polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 570–581. ACM, New York (2014). https://doi.org/10.1137/1.9781611973402.43
Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 169–190 (1950). https://doi.org/10.1007/BF02289199
Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72
Meir, A., Moon, J.W.: Relations between packing and covering numbers of a tree. Pacific J. Math. 61(1), 225–233 (1975)
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Combin. Theory Ser. B 28(3), 284–304 (1980). https://doi.org/10.1016/0095-8956(80)90074-X
Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)
Montealegre, P., Todinca, I.: On distance-d independent set and other problems in graphs with “few’’ minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_16
Pilipczuk, M., Siebertz, S.: Kernelization and approximation of distance-\(r\) independent sets on nowhere dense graphs. Eur. J. Combin. 94, 103309, 19 (2021). https://doi.org/10.1016/j.ejc.2021.103309
Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ. Carolinae 15, 307–309 (1974)
Sasaki, M., Zhao, L., Nagamochi, H.: Security-aware beacon based network monitoring. In: 2008 11th IEEE Singapore International Conference on Communication Systems, pp. 527–531. IEEE (2008)
Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discrete Math. 29(1), 53–76 (1980). https://doi.org/10.1016/0012-365X(90)90287-R
Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the maximum matching problem. Inform. Process. Lett. 15(1), 14–19 (1982). https://doi.org/10.1016/0020-0190(82)90077-1
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980). https://doi.org/10.1137/0138030
Zhang, Z., Li, X., Shi, Y., Nie, H., Zhu, Y.: PTAS for minimum \(k\)-path vertex cover in ball graph. Inform. Process. Lett. 119, 9–13 (2017). https://doi.org/10.1016/j.ipl.2016.11.003
Acknowledgments
The authors wish to thank Peter Muršič for valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dallard, C., Krbezlija, M., Milanič, M. (2021). Vertex Cover at Distance on H-Free Graphs. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-79987-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79986-1
Online ISBN: 978-3-030-79987-8
eBook Packages: Computer ScienceComputer Science (R0)