Skip to main content

Vertex Cover at Distance on H-Free Graphs

  • Conference paper
  • First Online:
  • 814 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12757))

Abstract

The question of characterizing graphs H such that the Vertex Cover problem is solvable in polynomial time in the class of H-free graphs is notoriously difficult and still widely open. We completely solve the corresponding question for a distance-based generalization of vertex cover called distance-k vertex cover, for any positive integer k. In this problem the task is to determine, given a graph G and an integer \(\ell \), whether G contains a set of at most \(\ell \) vertices such that each edge of G is at distance at most k from a vertex in the set. We show that for all \(k \ge 1\) and all graphs H, the distance-k vertex cover problem is solvable in polynomial time in the class of H-free graphs if H is an induced subgraph of \(P_{2k+2} + sP_{\max \{k,2\}}\) for some \(s \ge 0\), and NP-complete otherwise.

This work is supported in part by the Slovenian Research Agency (I0-0035, research program P1-0285 and research projects J1-9110, N1-0102, N1-0160).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph independence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13. Gor’kov. Gos. Univ., Gorki (1982)

    Google Scholar 

  2. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Appl. Math. 135(1–3), 3–16 (2004). https://doi.org/10.1016/S0166-218X(02)00290-1

    Article  MathSciNet  Google Scholar 

  3. Alvarado, J.D., Dantas, S., Rautenbach, D.: Distance \(k\)-domination, distance \(k\)-guarding, and distance \(k\)-vertex cover of maximal outerplanar graphs. Discrete Appl. Math. 194, 154–159 (2015). https://doi.org/10.1016/j.dam.2015.05.010

    Article  MathSciNet  MATH  Google Scholar 

  4. Bacsó, G., Marx, D., Tuza, Z.: \(H\)-free graphs, independent sets, and subexponential-time algorithms. In: 11th International Symposium on Parameterized and Exact Computation, LIPIcs. Leibniz International Proceedings o Inform., vol. 63, pp. Art. No. 3, 12, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)

    Google Scholar 

  5. Brandstädt, A., Mosca, R.: Maximum weight independent set for \(\ell \)claw-free graphs in polynomial time. Discrete Appl. Math. 237, 57–64 (2018). https://doi.org/10.1016/j.dam.2017.11.029

  6. Brešar, B., Jakovac, M., Katrenič, J., Semanišin, G., Taranenko, A.: On the vertex \(k\)-path cover. Discrete Appl. Math. 161(13–14), 1943–1949 (2013). https://doi.org/10.1016/j.dam.2013.02.024

    Article  MathSciNet  MATH  Google Scholar 

  7. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum \(k\)-path vertex cover. Discrete Appl. Math. 159(12), 1189–1195 (2011). https://doi.org/10.1016/j.dam.2011.04.008

    Article  MathSciNet  MATH  Google Scholar 

  8. Busch, A.H., Dragan, F.F., Sritharan, R.: New min-max theorems for weakly chordal and dually chordal graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6509, pp. 207–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17461-2_17

    Chapter  MATH  Google Scholar 

  9. Camby, E., Schaudt, O.: A new characterization of \(P_k\)-free graphs. Algorithmica 75(1), 205–217 (2015). https://doi.org/10.1007/s00453-015-9989-6

    Article  MATH  Google Scholar 

  10. Canales, S., Hernández, G., Martins, M., Matos, I.: Distance domination, guarding and covering of maximal outerplanar graphs. Discrete Appl. Math. 181, 41–49 (2015). https://doi.org/10.1016/j.dam.2014.08.040

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, G.J., Nemhauser, G.L.: The \(k\)-domination and \(k\)-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods 5(3), 332–345 (1984)

    Article  MathSciNet  Google Scholar 

  12. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981). https://doi.org/10.1016/0166-218X(81)90013-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009

    Article  MathSciNet  MATH  Google Scholar 

  14. Dvořák, Z.: On distance \(r\)-dominating and \(2r\)-independent sets in sparse graphs. J. Graph Theory 91(2), 162–173 (2019). https://doi.org/10.1002/jgt.22426

    Article  MathSciNet  MATH  Google Scholar 

  15. Eto, H., Guo, F., Miyano, E.: Distance-\(d\) independent set problems for bipartite and chordal graphs. J. Combin. Optimizat. 27(1), 88–99 (2013). https://doi.org/10.1007/s10878-012-9594-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Gartland, P., Lokshtanov, D.: Independent set on \(P_k\)-free graphs in quasi-polynomial time. In: 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 613–624, IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00063

  17. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \(P_6\)-free graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1257–1271, SIAM, Philadelphia, PA (2019). https://doi.org/10.1137/1.9781611975482.77

  18. Horton, J.D., López-Ortiz, A.: On the number of distributed measurement points for network tomography. In: Proceedings of the 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, FL, USA, October 27–29, 2003, pp. 204–209, ACM (2003)

    Google Scholar 

  19. Jaffke, L., Kwon, O.J., Strømme, T.J.F., Telle, J.A.: Mim-width III. Graph powers and generalized distance domination problems. Theoret. Comput. Sci. 796, 216–236 (2019). https://doi.org/10.1016/j.tcs.2019.09.012

    Article  MathSciNet  MATH  Google Scholar 

  20. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer computations, Proceedings of the Symposium IBM Thomas Journal Watson Research Center, Yorktown Heights, N.Y., 1972, pp. 85–103 (1972)

    Google Scholar 

  21. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structurally parameterized \(d\)-scattered set. In: Brandstädt, A., Köhler, E., Meer, K. (eds.) Graph-Theoretic Concepts in Computer Science, LNCS, vol. 11159, pp. 292–305, Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00256-5_24

  22. Lee, E.: Partitioning a graph into small pieces with applications to path transversal. Math. Program. (1), 1–19 (2018). https://doi.org/10.1007/s10107-018-1255-7

  23. Lemańska, M.: On the minimum vertex \(k\)-path cover of trees. Util. Math. 100, 299–307 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Lokshantov, D., Vatshelle, M., Villanger, Y.: Independent set in \(P_5\)-free graphs in polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 570–581. ACM, New York (2014). https://doi.org/10.1137/1.9781611973402.43

  25. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 169–190 (1950). https://doi.org/10.1007/BF02289199

    Article  MathSciNet  Google Scholar 

  26. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72

    Chapter  MATH  Google Scholar 

  27. Meir, A., Moon, J.W.: Relations between packing and covering numbers of a tree. Pacific J. Math. 61(1), 225–233 (1975)

    Article  MathSciNet  Google Scholar 

  28. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Combin. Theory Ser. B 28(3), 284–304 (1980). https://doi.org/10.1016/0095-8956(80)90074-X

    Article  MathSciNet  MATH  Google Scholar 

  29. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)

    Google Scholar 

  30. Montealegre, P., Todinca, I.: On distance-d independent set and other problems in graphs with “few’’ minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_16

    Chapter  MATH  Google Scholar 

  31. Pilipczuk, M., Siebertz, S.: Kernelization and approximation of distance-\(r\) independent sets on nowhere dense graphs. Eur. J. Combin. 94, 103309, 19 (2021). https://doi.org/10.1016/j.ejc.2021.103309

  32. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ. Carolinae 15, 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

  33. Sasaki, M., Zhao, L., Nagamochi, H.: Security-aware beacon based network monitoring. In: 2008 11th IEEE Singapore International Conference on Communication Systems, pp. 527–531. IEEE (2008)

    Google Scholar 

  34. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discrete Math. 29(1), 53–76 (1980). https://doi.org/10.1016/0012-365X(90)90287-R

    Article  MathSciNet  MATH  Google Scholar 

  35. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the maximum matching problem. Inform. Process. Lett. 15(1), 14–19 (1982). https://doi.org/10.1016/0020-0190(82)90077-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980). https://doi.org/10.1137/0138030

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Z., Li, X., Shi, Y., Nie, H., Zhu, Y.: PTAS for minimum \(k\)-path vertex cover in ball graph. Inform. Process. Lett. 119, 9–13 (2017). https://doi.org/10.1016/j.ipl.2016.11.003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Peter Muršič for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Dallard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dallard, C., Krbezlija, M., Milanič, M. (2021). Vertex Cover at Distance on H-Free Graphs. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79987-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79986-1

  • Online ISBN: 978-3-030-79987-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics