Abstract
This paper shows card-based cryptographic protocols to calculate several Boolean functions using private operations under the semi-honest model. Private operations, introduced by Nakai et al. are the most powerful operations for card-based protocols. We showed that copy, logical AND, and logical XOR can be calculated with the minimum number of cards using three private operations, private random bisection cuts, private reverse cuts, and private reveals. This paper shows that by using these private operations, all of the following Boolean functions can be calculated without additional cards other than the input cards: (1) Any three input Boolean functions, (2) Half adder and full adder, and (3) Any n-input symmetric Boolean functions. The numbers of cards used in these protocols are smaller than the ones without private operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abe, Y., Hayashi, Y.I., Mizuki, T., Sone, H.: Five-card and computations in committed format using only uniform cyclic shuffles. New Gener. Comput. 39(1), 97–114 (2021)
den Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23
Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8
Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: secure computation with playing cards (2013). http://cdchawthorne.com/writings/secure_playing_cards.pdf
Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27
Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14
Dvořák, P., Kouckỳ, M.: Barrington plays cards: the complexity of card-based protocols. arXiv preprint arXiv:2010.08445 (2020)
Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary and sufficient numbers of cards for securely computing two-bit output functions. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_10
Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward finite-runtime card-based protocol for generating hidden random permutation without fixed points. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 101-A(9), 1503–1511 (2018)
Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 101(9), 1512–1524 (2018)
Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: Proceedings of 3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI 2016), pp. 252–257 (2016)
Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16
Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: The minimum number of cards in practical card-based protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 126–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_5
Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint Archive, Report 2018/951 (2018)
Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. New Gener. Comput. 39(1), 115–158 (2021)
Koch, A., Walzer, S.: Private function evaluation with cards. Cryptology ePrint Archive, Report 2018/1113 (2018). https://eprint.iacr.org/2018/1113
Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: Proceedings of 10th International Conference on Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Koch, A., Walzer, S., Härtel, K.: Card-Based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32
Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proceedings of 2017 Symposium on Cryptography and Information Security (SCIS 2017), pp. 1A2-6 (2017). (in Japanese)
Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for Slitherlink: how to perform physical topology-preserving computation. In: Heng, S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34339-2_8
Manabe, Y., Ono, H.: Secure card-based cryptographic protocols using private operations against malicious players. In: Maimut, D., Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS, vol. 12596, pp. 55–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69255-1_5
Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR Cryptology ePrint Archive, Report 2015/1031 (2015)
Miyahara, D., Hayashi, Y.i., Mizuki, T., Sone, H.: Practical card-based implementations of Yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)
Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Proceedings of 10th International Conference on Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 102(9), 1072–1078 (2019)
Mizuki, T.: Applications of card-based cryptography to education. IEICE Techinical Report ISEC2016-53, pp. 13–17 (2016). (in Japanese)
Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple variables. Theor. Comput. Sci. 622, 34–44 (2016)
Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39074-6_16
Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36
Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its applications. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 100(1), 3–11 (2017)
Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36
Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Australas. J. Comb. 36, 279–293 (2006)
Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-based uniformly distributed random derangement. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 78–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_7
Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve millionaires’ problem with two kinds of cards. New Gener. Comput. 39(1), 73–96 (2021)
Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-input voting protocol utilizing private permutations. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_9
Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1), 173–183 (1998)
Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any Boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_11
Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input functions with eight cards. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 98(6), 1145–1152 (2015)
Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using unequal division shuffles. Soft. Comput. 22(2), 361–371 (2018)
Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: Proceedings of 13th Asia Joint Conference on Information Security (AsiaJCIS 2018), pp. 23–28 (2018)
Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum number of rounds using private operations. In: Pérez-Solà , C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J. (eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 156–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31500-9_10
Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New Gener. Comput. 39(1), 19–40 (2021)
Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for Suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_19
Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for connectivity: applications to nurikabe and hitori. In: Proceedings of 17th International Conference on Computability in Europe (CiE 2021). LNCS (2021)
Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 349–358. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_30
Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. In: Chen, J., Feng, Q., Xu, J. (eds.) TAMC 2020. LNCS, vol. 12337, pp. 25–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59267-7_3
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for number link puzzle and k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_24
Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)
Sasao, T., Butler, J.T.: Progress in Applications of Boolean Functions. Morgan and Claypool Publishers, San Franciso (2010)
Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input equality. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 123–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_8
Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based computation of any Boolean circuit. Discrete App. Math. 289, 248–261 (2021)
Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert lottery. In: Maimut, D., Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS, vol. 12596, pp. 257–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69255-1_17
Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for logic gates utilizing private permutations. In: Proceedings of 2017 Symposium on Cryptography and InformationSecurity (SCIS 2017), p. 1A2-2 (2017). (in Japanese)
Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–678 (2001)
Takashima, K., et al.: Card-based protocols for secure ranking computations. Theor. Comput. Sci. 845, 122–135 (2020)
Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack on card-based protocols. Nat. Comput. 1–14 (2021)
Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime XOR protocol with only random cut. In: Proceedings of the 7th ACM Workshop on ASIA Public-Key Cryptography, pp. 2–8 (2020)
Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-based majority voting protocols with three inputs using three cards. In: Proceedings of 2018 International Symposium on Information Theory and its Applications (ISITA), pp. 218–222. IEEE (2018)
Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE Transactions on Fundamentals of Electronics, Commun. Comput. Sci. E103.A(11), 1296–1298 (2020). https://doi.org/10.1587/transfun.2020EAL2025
Acknowledgement
The authors would like to thank anonymous referees for their careful reading of our manuscript and their many insightful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Manabe, Y., Ono, H. (2021). Card-Based Cryptographic Protocols for Three-Input Functions Using Private Operations. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-79987-8_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79986-1
Online ISBN: 978-3-030-79987-8
eBook Packages: Computer ScienceComputer Science (R0)