Skip to main content

Backtrack Search for Parallelisms of Projective Spaces

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2021)

Abstract

A spread in \(\mathrm{PG}(n,q)\) is a set of lines which partition the point set. A partition of the set of lines by spreads is called a parallelism. The numerous relations and applications of parallelisms determine a significant interest in the methods for their construction. We consider two different backtrack search algorithms which can be used for that purpose. The first one implies search on a set of spreads, and the second - on the lines of the projective space. The authors have used them for the classification of parallelisms invariant under definite automorphism groups. The present paper concerns the applicability of each of the two algorithms to cases with different peculiarities, and some ways to modify them for usage on parallel computers. Suitable examples are given.

The research of both authors is partially supported by the Bulgarian National Science Fund under Contract No KP-06-N32/2-2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, R.D.: Partitioning the planes of \(AG_{2m}(2)\) into 2-designs. Discrete Math. 15, 205–211 (1976). https://doi.org/10.1016/0012-365X(76)90025-X

    Article  MathSciNet  MATH  Google Scholar 

  2. Betten, A.: The packings of PG(3,3). Des. Codes Cryptogr. 79 (3), 583–595 (2016). https://doi.org/10.1007/s10623-015-0074-6.

  3. Betten, A., Topalova, S., Zhelezova, S.: Parallelisms of \(\rm PG(3,4)\) invariant under cyclic groups of order 4. In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545, pp. 88–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3_8

    Chapter  Google Scholar 

  4. Betten, A., Topalova, S., Zhelezova, S.: New uniform subregular parallelisms of PG(3,4) invariant under an automorphism of order 2. Cybern. Inf. Technol. 20(6), 18–27 (2020). https://doi.org/10.2478/cait-2020-0057

  5. Beutelspacher, A.: On parallelisms in finite projective spaces. Geom. Dedicata. 3(1), 35–40 (1974). https://doi.org/10.1007/BF00181359

    Article  MathSciNet  MATH  Google Scholar 

  6. Braun, M.: Construction of a point-cyclic resolution in \(PG(9,2)\). Innov. Incid. Geom. Algebr. Topol. Comb. 3(1), 33–50 (2006). https://doi.org/10.2140/iig.2006.3.33

    Article  MathSciNet  MATH  Google Scholar 

  7. Denniston, R. H. F.: Some packings of projective spaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 52(8), 36–40 (1972)

    Google Scholar 

  8. Etzion, T., Silberstein, N.: Codes and designs related to lifted MRD codes. IEEE Trans. Inform. Theory 59(2), 1004–1017 (2013). https://doi.org/10.1109/ISIT.2011.6033969

    Article  MathSciNet  MATH  Google Scholar 

  9. Fuji-Hara, R.: Mutually 2-orthogonal resolutions of finite projective space. Ars Combin. 21, 163–166 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Faradžev, I. A.: Constructive enumeration of combinatorial objects. In Problèmes Combinatoires et Théorie des Graphes, (Université d’Orsay, July 9–13, 1977). Colloq. Internat. du C.N.R.S., vol. 260, pp. 131–135, CNRS, Paris (1978)

    Google Scholar 

  11. Gruner, A., Huber, M.: New combinatorial construction techniques for low-density parity-check codes and systematic repeat-accumulate codes. IEEE Trans. Commun. 60(9), 2387–2395 (2012). https://doi.org/10.1109/TCOMM.2012.070912.110164

    Article  Google Scholar 

  12. Johnson, N.L.: Some new classes of finite parallelisms, Note Mat. 20(2), 77–88 (2000). https://doi.org/10.1285/i15900932v20n2p77

  13. Johnson, N.L.: Combinatorics of Spreads and Parallelisms. Pure and Applied MathematicsPure and Applied Mathematics, Chapman & Hall. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  14. Kaski, P., Östergård, P.: Classification algorithms for codes and designs. Algorithms and Computation in Mathematics, vol. 15. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28991-7

    Book  MATH  Google Scholar 

  15. Penttila, T., Williams, B.: Regular packings of \(PG(3, q)\). Eur. J. Comb. 19(6), 713–720 (1998)

    Article  MathSciNet  Google Scholar 

  16. Prince, A.R.: Parallelisms of \(PG(3,3)\) invariant under a collineation of order 5. In: Johnson, N.L. (ed.) Mostly Finite Geometries. Lecture Notes in Pure and Applied Mathematics, vol. 190, pp. 383–390. Marcel Dekker, New York (1997)

    Google Scholar 

  17. Prince, A.R.: Uniform parallelisms of PG(3,3). In: Hirschfeld, J., Magliveras, S., Resmini, M. (eds.) Geometry, Combinatorial Designs and Related Structures, London Mathematical Society Lecture Note Series, vol. 245, pp. 193–200. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511526114.017

  18. Prince, A.R.: The cyclic parallelisms of \(PG(3,5)\). Eur. J. Comb. 19(5), 613–616 (1998)

    Article  MathSciNet  Google Scholar 

  19. Read, R.C.: Every one a winner; or, how to avoid isomorphism search when cataloguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978). https://doi.org/10.1016/S0167-5060(08)70325-X

    Article  MathSciNet  MATH  Google Scholar 

  20. Sarmiento, J.: Resolutions of \(PG(5,2)\) with point-cyclic automorphism group. J. Comb. Des. 8(1), 2–14 (2000). https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<2::AID-JCD2>3.0.CO;2-H

  21. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004). https://doi.org/10.1007/b97564

    Book  MATH  Google Scholar 

  22. Stinson, D.R., Vanstone, S.A.: Orthogonal packings in \(PG(5,2)\). Aequationes Math. 31(1), 159–168 (1986). https://doi.org/10.1007/BF02188184

    Article  MathSciNet  MATH  Google Scholar 

  23. Storme, L.: Finite Geometry. In: Colbourn, C., Dinitz, J. (eds.) Handbook of Combinatorial Designs. 2nd edn. Rosen, K. (eds.) Discrete mathematics and its applications, pp. 702–729. CRC Press, Boca Raton (2007)

    Google Scholar 

  24. Topalova, S., Zhelezova, S.: On transitive parallelisms of \(PG(3,4)\). Appl. Algebra Engrg. Comm. Comput. 24(3–4), 159–164 (2013). https://doi.org/10.1007/s00200-013-0194-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Topalova, S., Zhelezova, S.: On point-transitive and transitive deficiency one parallelisms of PG\((3,4)\). Designs, Codes Cryptogr. 75(1), 9–19 (2013). https://doi.org/10.1007/s10623-013-9887-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Topalova, S., Zhelezova, S.: New Regular Parallelisms of \(PG(3,5)\). J. Comb. Des. 24, 473–482 (2016). https://doi.org/10.1002/jcd.21526

    Article  MathSciNet  MATH  Google Scholar 

  27. Topalova, S., Zhelezova, S.: New parallelisms of \(PG(3,4)\). Electron. Notes Discrete Math. 57, 193–198 (2017). https://doi.org/10.1016/j.endm.2017.02.032

    Article  MATH  Google Scholar 

  28. Topalova, S., Zhelezova, S.: Types of spreads and duality of the parallelisms of PG(3,5) with automorphisms of order 13. Des. Codes Cryptogr. 87 (2–3), 495–507 (2019). https://doi.org/10.1007/s10623-018-0558-2

  29. Topalova, S., Zhelezova, S.: Isomorphism and invariants of parallelisms of projective spaces. In: Bigatti, A., Carette, J., Davenport, J., Joswig, M., De Wolff, T. (eds.), Mathematical Software - ICMS 2020, Lecture Notes in Computer Science, vol. 12097, pp. 162–172, Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52200-1_16

  30. Topalova, S., Zhelezova, S.: Some parallelisms of PG(3,5) involving a definite type of spread. In: 2020 Algebraic and Combinatorial Coding Theory (ACCT), pp. 135–139 (2020). https://doi.org/10.1109/ACCT51235.2020.9383404

  31. Zaicev, G., Zinoviev, V., Semakov, N.: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes. In: Proceedings of Second International Symposium on Information Theory, (Armenia, USSR, 1971), Budapest, Academiai Kiado, pp. 257–263 (1973)

    Google Scholar 

Download references

Acknowledgements

For testing the algorithms from Sect. 4 the authors acknowledge the provided access to the e-infrastructure of the NCHDC – part of the Bulgarian National Roadmap on RIs, with the financial support by the Grant No D01-221/03.12.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stela Zhelezova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Topalova, S., Zhelezova, S. (2021). Backtrack Search for Parallelisms of Projective Spaces. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79987-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79986-1

  • Online ISBN: 978-3-030-79987-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics