Skip to main content

Critical Review of Wake Vortex Mitigation Concepts in Human Factors

  • Conference paper
  • First Online:
Advances in Human Aspects of Transportation (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 270))

Included in the following conference series:

  • 1772 Accesses

Abstract

To increase capacity, the air transportation industry has shown interest in wake mitigation, with the goal of reducing the in-trail separation between leading and trailing aircraft operations. Wake vortex separation is a major impediment to this goal. Replacing the current, static wake separations with dynamic separations, based on airport fleet mix or environmental and aircraft factors, could increase airport and airspace capacity. This paper describes a research effort to locate, review, and summarize already developed or currently proposed dynamic wake mitigation separation concepts. This study also discusses the technical feasibility and implementation challenges of each concept, identifies possible research gaps, and proposes future research recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rutishauser, D.K.: Progress towards the investigation of technical issues relevant to the design of an aircraft wake vortex advisory system (WakeVAS). In: 21st AIAA Applied Aerodynamics Conference 2003, 23 June 2003–26 June 2003, Orlando, FL, United states, American Institute of Aeronautics and Astronautics Inc. (2003)

    Google Scholar 

  2. Witzberger, K.E., Robinson, J.: Analysis of excess wake vortex separation on arrival delay. In: 2013 Aviation Technology, Integration, and Operations Conference, American Institute of Aeronautics and Astronautics (2013)

    Google Scholar 

  3. Baren, G.V., Speijker, L., Frech, M.: Increased arrival capacity through the use of the ATC-wake separation mode planner. In: 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO), American Institute of Aeronautics and Astronautics (2006)

    Google Scholar 

  4. Hoogstraten, M., Visser, H.G., Hart, D., Treve, V., Rooseleer, F.: Improved understanding of en route wake-vortex encounters. J. Aircraft, 1–9 (2014)

    Google Scholar 

*The following references have been used for the critical review but were not cited in the paper

  1. Ahmad, N.N., et al.: Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data. NASA Langley (2016)

    Google Scholar 

  2. *Beechener, J.: NATS launches time-based separation tool. Jane's Airport Rev. 26(4) (2014)

    Google Scholar 

  3. *Bell, A.: Developing Standards for Time-Based Sequencing & Separation of Aircraft. IEEE (2012)

    Google Scholar 

  4. *Bieniek, D., Luckner, R.: Simulation of aircraft encounters with perturbed vortices considering unsteady aerodynamic effects. J. Aircr. 51(3), 705–718 (2014)

    Article  Google Scholar 

  5. *Bobylev, A.V., Vyshinsky, V.V., Soudakov, G.G., Yaroshevsky, V.A.: Aircraft vortex wake and flight safety problems. J. Aircr. 47(2), 663–674 (2010)

    Article  Google Scholar 

  6. *Breitsamter, C.: Wake vortex characteristics of transport aircraft. Prog. Aerosp. Sci. 47(2), 89–134 (2011). https://doi.org/10.1016/j.paerosci.2010.09.002

    Article  Google Scholar 

  7. *Corjon, A., Poinsot, T.: A model to define aircraft separations due to wake vortex encounter. In: 13th Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics (1995)

    Google Scholar 

  8. *Crouch, J.: Airplane trailing vortices and their control. C. R. Phys. 6(4–5), 487–499 (2005)

    Article  Google Scholar 

  9. *Dunham, R., Stuever, R., Vicroy, D.: The Challenges of Simulating Wake Vortex Encounters and Assessing Separation Criteria. Flight Simulation and Technologies, American Institute of Aeronautics and Astronautics (1993)

    Google Scholar 

  10. FAA Order AC 90–23G. Aircraft Wake Turbulence. AC 90–23G. F. A. A. U.S. Department of Transportation (2014)

    Google Scholar 

  11. FAA-Order-7110.308. JO 7110.308. F. A. A. U.S. Department of Transportation (2008)

    Google Scholar 

  12. FAA. JO 7110.608. In C by JO 7110.659A, edited by Federal Aviation Administration U.S. Department of Transportation (2012)

    Google Scholar 

  13. *FAA. JO 7110.609. In C, edited by Federal Aviation Administration U.S. Department of Transportation (2012)

    Google Scholar 

  14. FAA. JO 7110.316. F. A. A. U.S. Department of Transportation (2013)

    Google Scholar 

  15. FAA. SOIA AT SFO (2013)

    Google Scholar 

  16. *Fan, Z., Trani, A., Hobeika, A., Abbas, M., Pasupathy, R.: A Computer Model to Predict Potential Wake Turbulence Encounters in the National Airspace System, Virginia Tech (2014)

    Google Scholar 

  17. Feuerle, T., Steen, M., Hecker, P.: A new concept for wake vortex hazard mitigation using on-board measurement equipment. In: 2013 Aviation Technology, Integration, and Operations Conference, American Institute of Aeronautics and Astronautics (2013)

    Google Scholar 

  18. Gentry, J., Duffy, K., Swedish, W.J.: FAA and MITRE. Airport Capacity Profiles F055-L11–014 T. M. C. FEDERAL Aviation Administration (2014)

    Google Scholar 

  19. *Gerz, T., et al.: Research towards a wake-vortex advisory system for optimal aircraft spacing. C. R. Phys. 6(4–5), 501–523 (2005)

    Article  Google Scholar 

  20. *Greene, G.: Wake vortex alleviation. In: International Air Transportation Conference, American Institute of Aeronautics and Astronautics (1981)

    Google Scholar 

  21. Höhne, G., Fuhrmann, M., Luckner, R.: Critical wake vortex encounter scenarios. Aerosp. Sci. Technol. 8(8), 689–701 (2004)

    Article  Google Scholar 

  22. *Holzäpfel, F., et al.: Aircraft wake vortex scenarios simulation package – wakescene. Aerosp. Sci. Technol. 13(1), 1–11 (2009)

    Article  MathSciNet  Google Scholar 

  23. *Holzäpfel, F., Kladetzke, J.: Assessment of wake-vortex encounter probabilities for crosswind departure scenarios. J. Aircr. 48(3), 812–822 (2011)

    Article  Google Scholar 

  24. Janic, M.: Steeper approach procedure for increasing ultimate capacity of closely spaced parallel runways. Transp. Res. Rec. (0361–1981) (2007)

    Google Scholar 

  25. *Johnson, S.C., U. S. N. A. S. Administration and L. R. Center: Simplified Aircraft-Based Paired Approach: Concept Definition and Initial Analysis. Hampton, Virginia, National Aeronautics and Space Administration, Langley Research Center (2013)

    Google Scholar 

  26. Lau, A., Lorenz, S., Holzäpfel, F.: Individual wake vortex separations: capacity and delay impact on single and dual dependent runway systems. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics (2012)

    Google Scholar 

  27. *National Research Council. Committee to Conduct an Independent Assessment of the Nation’s Wake Turbulence, Research, and Program Development: Wake Turbulence: An Obstacle To Increased Air Traffic Capacity. National Academies Press, Washington, D.C (2008)

    Google Scholar 

  28. *Sureshkumar, C., Hwang, I.: Optimal arrival and departure sequencing on a runway system. In: AIAA Guidance, Navigation, and Control (GNC) Conference, American Institute of Aeronautics and Astronautics (2013)

    Google Scholar 

  29. *Switzer, G., Proctor, F.: Numerical study of wake vortex behavior in turbulent domains with ambient stratification. In: 38th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics (2000)

    Google Scholar 

  30. *Tittsworth, J.A., Lunsford, C.R., Cooper, W.W., Audenaerd, L., Sherry, J., Cole, R.E.: An analysis of potential capacity enhancements through wind dependent wake turbulence procedures. T. M. C. Federal Aviation Administration, MIT Lincoln Laboratory. Washington, DC (2005)

    Google Scholar 

  31. Tittsworth, J., Cheng, J., Gallo, W., Awwad, A.: The development of wake turbulence recategorization in the United States. The American Institute of Aeronautics and Astronautics AIAA Aviation (2016)

    Google Scholar 

  32. Tittsworth, J., Lang, S., Johnson, E., Barnes, S.: Wake Turbulence Program - 2013 Highlights. WakeNet, Bonneuil-sur-Marne, France (2013)

    Google Scholar 

  33. *Vicroy, D., et al.: Characterizing the Hazard of a Wake Vortex Encounter. NASA Langley (1998)

    Google Scholar 

  34. Visscher, I.D., Bricteux, L., Winckelmans, G.: Aircraft vortices in stably stratified and weakly turbulent atmospheres: simulation and modeling. AIAA J. 51(3), 551–566 (2013)

    Article  Google Scholar 

  35. *Verbeek, R.J.D.: Landing Capacity of a Dual Threshold Runway. Delft University of Technology (Netherlands), Faculty of Aerospace Engineering, memorandum m-857 (1998)

    Google Scholar 

  36. Williams, D., Lohr, G.: Wake turbulence mitigation for arrivals. In: 26th International Congress of the Aeronautical Sciences N. Langley. NASA Langley Research Center, Hampton, Virginia, USA (2008)

    Google Scholar 

  37. *Xue, Y., Xu, H.-J., Wang, X.-L.: Build probability distribution maps of flight risk during wake encountering. J. Aircr. 52(3), 805–818 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Roa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roa, J. (2021). Critical Review of Wake Vortex Mitigation Concepts in Human Factors. In: Stanton, N. (eds) Advances in Human Aspects of Transportation. AHFE 2021. Lecture Notes in Networks and Systems, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-80012-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80012-3_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80011-6

  • Online ISBN: 978-3-030-80012-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics