Skip to main content

On the Impact of Treewidth in the Computational Complexity of Freezing Dynamics

  • Conference paper
  • First Online:
Connecting with Computability (CiE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12813))

Included in the following conference series:

  • 833 Accesses

Abstract

An automata network is a network of entities, each holding a state from a finite set and evolving according to a local update rule which depends only on its neighbors in the network’s graph. It is freezing if there is an order on states such that the state evolution of any node is non-decreasing in any orbit. They are commonly used to model epidemic propagation, diffusion phenomena like bootstrap percolation or cristal growth. In this paper we establish how alphabet size, treewidth and maximum degree of the underlying graph are key parameters which influence the overall computational complexity of finite freezing automata networks. First, we define a general specification checking problem that captures many classical decision problems such as prediction, nilpotency, predecessor, asynchronous reachability. Then, we present a fast-parallel algorithm that solves the general problem when the three parameters are bounded, hence showing that the problem is in NC. Finally, we show that these problems are hard from two different perspectives. First, the general problem is W[2]-hard when taking either treewidth or alphabet as single parameter and fixing the others. Second, the classical problems are hard in their respective classes when restricted to families of graphs with sufficiently large treewidth.

This reasearch was partially supported by French ANR project FANs ANR-18-CE40-0002 (G.T., M.R.W.) and ECOS project C19E02 (G.T., M.R.W.), ANID via PAI + Convocatoria Nacional Subvención a la Incorporación en la Academia Año 2017 + PAI77170068 (P.M.), FONDECYT 11190482 (P.M.), FONDECYT 1200006 (E.G., P.M.), STIC- AmSud CoDANet project 88881.197456/2018-01 (E.G., P.M.), ANID via PFCHA/DOCTORADO NACIONAL/2018 – 21180910 + PIA AFB 170001 (M.R.W).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amini, H., Fountoulakis, N.: Bootstrap percolation in power-law random graphs. J. Stat. Phys. 155(1), 72–92 (2014)

    Article  MathSciNet  Google Scholar 

  2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Disc. Methods 8(2), 277–284 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bak, P., Chen, K., Tang, C.: A forest-fire model and some thoughts on turbulence. Phys. Lett. A 147(5), 297–300 (1990)

    Article  Google Scholar 

  4. Becker, F., Maldonado, D., Ollinger, N., Theyssier, G.: Universality in freezing cellular automata. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 50–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_5

    Chapter  MATH  Google Scholar 

  5. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

    Article  MathSciNet  Google Scholar 

  6. Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. J. ACM 63(5), 1–65 (2016)

    Article  MathSciNet  Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  8. Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G., Porreca, A.E.: Computational complexity of finite asynchronous cellular automata. Theor. Comput. Sci. 664, 131–143 (2017)

    Article  MathSciNet  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness i: basic results. SIAM J. Comput. 24(4), 873–921 (1995)

    Article  MathSciNet  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Appendix 2: Menger’s theorems. Fundamentals of Parameterized Complexity. TCS, pp. 705–707. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1_35

    Chapter  MATH  Google Scholar 

  11. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bodlaender and courcelle. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE (2010)

    Google Scholar 

  12. Fuentes, M., Kuperman, M.: Cellular automata and epidemiological models with spatial dependence. Physica A Stat. Mech. Appl. 267(3–4), 471–486 (1999)

    Article  Google Scholar 

  13. Gadouleau, M.: On the influence of the interaction graph on a finite dynamical system. Natural Computing (to appear)

    Google Scholar 

  14. Gadouleau, M., Richard, A.: Simple dynamics on graphs. Theor. Comput. Sci. 628, 62–77 (2016)

    Article  MathSciNet  Google Scholar 

  15. Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: Exploratory Papers of Cellular Automata and Discrete Complex Systems (AUTOMATA 2015), pp. 65–73 (2015)

    Google Scholar 

  16. Goles, E., Maldonado, D., Montealegre-Barba, P., Ollinger, N.: Fast-parallel algorithms for freezing totalistic asynchronous cellular automata. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 406–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8_37

    Chapter  Google Scholar 

  17. Goles, E., Martínez, S.: Neural and Automata Networks: Dynamical Behavior and Applications. Kluwer Academic Publishers, Norwell (1990)

    Book  Google Scholar 

  18. Goles, E., Montealegre, P., Ríos-Wilson, M., Theyssier, G.: On the impact of treewidth in the computational complexity of freezing dynamics. arXiv preprint arXiv:2005.11758 (2020)

  19. Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstraping percolation and other problems. Theor. Comput. Sci. 504, 73–82 (2013)

    Article  MathSciNet  Google Scholar 

  20. Green, F.: NP-complete problems in cellular automata. Complex Syst. 1 (1987)

    Google Scholar 

  21. Griffeath, D., Moore, C.: Life without death is P-complete. Complex Syst. 10 (1996)

    Google Scholar 

  22. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21, 571–586 (1992)

    Article  MathSciNet  Google Scholar 

  23. Kawachi, A., Ogihara, M., Uchizawa, K.: Generalized predecessor existence problems for boolean finite dynamical systems on directed graphs. Theor. Comput. Sci. 762, 25–40 (2019)

    Article  MathSciNet  Google Scholar 

  24. Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second-order logic. In: SODA 2010, pp. 354–364. SIAM (2010)

    Google Scholar 

  25. Kutrib, M., Malcher, A.: Cellular automata with sparse communication. Theor. Comput. Sci. 411(38–39), 3516–3526 (2010)

    Article  MathSciNet  Google Scholar 

  26. Marx, D.: Can you beat treewidth? In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 169–179. IEEE (2007)

    Google Scholar 

  27. Ollinger, N., Theyssier, G.: Freezing, bounded-change and convergent cellular automata. CoRR abs/1908.06751 (2019)

    Google Scholar 

  28. Richard, A.: Nilpotent dynamics on signed interaction graphs and weak converses of thomas’ rules. Disc. Appl. Math. 267, 160–175 (2019)

    Article  MathSciNet  Google Scholar 

  29. Robertson, N., Seymour, P.: Graph minors. v. excluding a planar graph. J. Comb. Theory Series B 41(1), 92–114 (1986)

    Google Scholar 

  30. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)

    Article  MathSciNet  Google Scholar 

  31. Ulam, S.M.: On some mathematical problems connected with patterns of growth of figures. In: Bukrs, A.W. (ed.) Essays on Cellular Automata, pp. 219–231. U. of Illinois Press (1970)

    Google Scholar 

  32. Winslow, A.: A brief tour of theoretical tile self-assembly. In: Cook, M., Neary, T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 26–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39300-1_3

    Chapter  Google Scholar 

  33. Wu, A., Rosenfeld, A.: Cellular graph automata. i. basic concepts, graph property measurement, closure properties. Inf. Control 42(3), 305–329 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Ríos Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goles, E., Montealegre, P., Ríos Wilson, M., Theyssier, G. (2021). On the Impact of Treewidth in the Computational Complexity of Freezing Dynamics. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds) Connecting with Computability. CiE 2021. Lecture Notes in Computer Science(), vol 12813. Springer, Cham. https://doi.org/10.1007/978-3-030-80049-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80049-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80048-2

  • Online ISBN: 978-3-030-80049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics