Abstract
An automata network is a network of entities, each holding a state from a finite set and evolving according to a local update rule which depends only on its neighbors in the network’s graph. It is freezing if there is an order on states such that the state evolution of any node is non-decreasing in any orbit. They are commonly used to model epidemic propagation, diffusion phenomena like bootstrap percolation or cristal growth. In this paper we establish how alphabet size, treewidth and maximum degree of the underlying graph are key parameters which influence the overall computational complexity of finite freezing automata networks. First, we define a general specification checking problem that captures many classical decision problems such as prediction, nilpotency, predecessor, asynchronous reachability. Then, we present a fast-parallel algorithm that solves the general problem when the three parameters are bounded, hence showing that the problem is in NC. Finally, we show that these problems are hard from two different perspectives. First, the general problem is W[2]-hard when taking either treewidth or alphabet as single parameter and fixing the others. Second, the classical problems are hard in their respective classes when restricted to families of graphs with sufficiently large treewidth.
This reasearch was partially supported by French ANR project FANs ANR-18-CE40-0002 (G.T., M.R.W.) and ECOS project C19E02 (G.T., M.R.W.), ANID via PAI + Convocatoria Nacional Subvención a la Incorporación en la Academia Año 2017 + PAI77170068 (P.M.), FONDECYT 11190482 (P.M.), FONDECYT 1200006 (E.G., P.M.), STIC- AmSud CoDANet project 88881.197456/2018-01 (E.G., P.M.), ANID via PFCHA/DOCTORADO NACIONAL/2018 – 21180910 + PIA AFB 170001 (M.R.W).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amini, H., Fountoulakis, N.: Bootstrap percolation in power-law random graphs. J. Stat. Phys. 155(1), 72–92 (2014)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Disc. Methods 8(2), 277–284 (1987)
Bak, P., Chen, K., Tang, C.: A forest-fire model and some thoughts on turbulence. Phys. Lett. A 147(5), 297–300 (1990)
Becker, F., Maldonado, D., Ollinger, N., Theyssier, G.: Universality in freezing cellular automata. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 50–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_5
Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)
Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. J. ACM 63(5), 1–65 (2016)
Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G., Porreca, A.E.: Computational complexity of finite asynchronous cellular automata. Theor. Comput. Sci. 664, 131–143 (2017)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness i: basic results. SIAM J. Comput. 24(4), 873–921 (1995)
Downey, R.G., Fellows, M.R.: Appendix 2: Menger’s theorems. Fundamentals of Parameterized Complexity. TCS, pp. 705–707. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1_35
Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bodlaender and courcelle. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE (2010)
Fuentes, M., Kuperman, M.: Cellular automata and epidemiological models with spatial dependence. Physica A Stat. Mech. Appl. 267(3–4), 471–486 (1999)
Gadouleau, M.: On the influence of the interaction graph on a finite dynamical system. Natural Computing (to appear)
Gadouleau, M., Richard, A.: Simple dynamics on graphs. Theor. Comput. Sci. 628, 62–77 (2016)
Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: Exploratory Papers of Cellular Automata and Discrete Complex Systems (AUTOMATA 2015), pp. 65–73 (2015)
Goles, E., Maldonado, D., Montealegre-Barba, P., Ollinger, N.: Fast-parallel algorithms for freezing totalistic asynchronous cellular automata. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 406–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8_37
Goles, E., Martínez, S.: Neural and Automata Networks: Dynamical Behavior and Applications. Kluwer Academic Publishers, Norwell (1990)
Goles, E., Montealegre, P., Ríos-Wilson, M., Theyssier, G.: On the impact of treewidth in the computational complexity of freezing dynamics. arXiv preprint arXiv:2005.11758 (2020)
Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstraping percolation and other problems. Theor. Comput. Sci. 504, 73–82 (2013)
Green, F.: NP-complete problems in cellular automata. Complex Syst. 1 (1987)
Griffeath, D., Moore, C.: Life without death is P-complete. Complex Syst. 10 (1996)
Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21, 571–586 (1992)
Kawachi, A., Ogihara, M., Uchizawa, K.: Generalized predecessor existence problems for boolean finite dynamical systems on directed graphs. Theor. Comput. Sci. 762, 25–40 (2019)
Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second-order logic. In: SODA 2010, pp. 354–364. SIAM (2010)
Kutrib, M., Malcher, A.: Cellular automata with sparse communication. Theor. Comput. Sci. 411(38–39), 3516–3526 (2010)
Marx, D.: Can you beat treewidth? In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 169–179. IEEE (2007)
Ollinger, N., Theyssier, G.: Freezing, bounded-change and convergent cellular automata. CoRR abs/1908.06751 (2019)
Richard, A.: Nilpotent dynamics on signed interaction graphs and weak converses of thomas’ rules. Disc. Appl. Math. 267, 160–175 (2019)
Robertson, N., Seymour, P.: Graph minors. v. excluding a planar graph. J. Comb. Theory Series B 41(1), 92–114 (1986)
Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)
Ulam, S.M.: On some mathematical problems connected with patterns of growth of figures. In: Bukrs, A.W. (ed.) Essays on Cellular Automata, pp. 219–231. U. of Illinois Press (1970)
Winslow, A.: A brief tour of theoretical tile self-assembly. In: Cook, M., Neary, T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 26–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39300-1_3
Wu, A., Rosenfeld, A.: Cellular graph automata. i. basic concepts, graph property measurement, closure properties. Inf. Control 42(3), 305–329 (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Goles, E., Montealegre, P., Ríos Wilson, M., Theyssier, G. (2021). On the Impact of Treewidth in the Computational Complexity of Freezing Dynamics. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds) Connecting with Computability. CiE 2021. Lecture Notes in Computer Science(), vol 12813. Springer, Cham. https://doi.org/10.1007/978-3-030-80049-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-80049-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80048-2
Online ISBN: 978-3-030-80049-9
eBook Packages: Computer ScienceComputer Science (R0)