Skip to main content

Improving Accuracy and Latency in Image Re-identification by Gallery Database Cleansing

  • Conference paper
  • First Online:
Intelligent Computing

Abstract

Deep Metric learning (DML) is gaining popularity recently as a way of exploiting the advantages of deep learning in applications where the task involves adaption to variable object features, e.g. facial verification, person re-identification. In applications of deep learning where generalisability is difficult to achieve, DML provides an architecture which has the facility for the algorithm’s output’s to be adapted to each use case by framing classification tasks as a reidentification problem. At the inference stage, query embeddings generated by the DML model are compared against a gallery of embeddings in a latent space. This paper will investigate online database management strategies to preserve the quality and diversity of data and the representation of each class in the gallery of embeddings. We propose the use of SQL to facilitate the removal of outliers from an embedding database and also discuss latent works which study the geometric and statistical relationships between embeddings to formulate methods for outlier embeddings removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanyal, S.: Discriminative Descriptors for Unconstrained Face and Object Recognition (2017)

    Google Scholar 

  2. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification (2017)

    Google Scholar 

  3. Zheng, L., Yang, Y., Hauptmann, A.G.: Person Re-identification: Past, Present and Future (2016)

    Google Scholar 

  4. Wang, H., Li, H., Peng, J., Fu, X.: Multi-feature distance metric learning for non-rigid 3D shape retrieval. Multimedia Tools Appl. 78(21), 30943–30958 (2019). https://doi.org/10.1007/s11042-019-7670-9

    Article  Google Scholar 

  5. Boiarov, A., Tyantov, E.: Large Scale Landmark Recogni-tion via Deep Metric Learning (2019). https://doi.org/10.1145/3357384.3357956

    Article  Google Scholar 

  6. Bonadiman, D., Kumar, A., Mittal, A.: Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning (2019)

    Google Scholar 

  7. da Silva, A.C.M., Coelho, M.A.N., Neto, R.F.: A Music Classification model based on metric learning applied to MP3 audio files. Expert Syst. Appl. 144,(2020). https://doi.org/10.1016/j.eswa.2019.113071

  8. Thakur, A., Thapar, D., Rajan, P., Nigam, A.: Deep metric learning for bioacoustic classification: overcoming training data scarcity using dynamic triplet loss. J. Acoust. Soc. Am. 146, 534–547 (2019). https://doi.org/10.1121/1.5118245

    Article  Google Scholar 

  9. Marasović, T., Papić, V.: Accelerometer based gesture recognition system using distance metric learning for nearest neighbour classification. In: IEEE International Workshop on Machine Learning for Signal Processing, MLSP (2012)

    Google Scholar 

  10. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018). https://doi.org/10.1155/2018/7068349

    Article  Google Scholar 

  11. Chen-Yi, L., Rustia, D.J.A., Lin, T.-T.: Generative adversarial network based image augmentation for insect pest classification enhancement. IFAC-PapersOnLine 52(30), 1–5 (2019). https://doi.org/10.1016/j.ifacol.2019.12.406

    Article  MathSciNet  Google Scholar 

  12. O’ Mahony, N., Campbell, S., Carvalho, A., et al.: One-shot learning for custom identification tasks: a review. In: 29th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2019). Elsevier B.V., Limerick (2019)

    Google Scholar 

  13. Li, W., Huo, J., Shi, Y., et al.: Online Deep Metric Learning (2018)

    Google Scholar 

  14. Lin, X., Duan, Y., Dong, Q., et al.: Deep Variational Metric Learning. In: Computer Vision and Pattern Recognition (CVPR) (201AD)

    Google Scholar 

  15. Liu, M., Vemuri, B.C.: A robust and efficient doubly regularized metric learning approach. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part IV, pp. 646–659. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_46

    Chapter  Google Scholar 

  16. Parameswaran, S., Weinberger, K.Q.: Large margin multi-task metric learning. In: NIPS’10 Proceedings of the 23rd International Conference on Neural Information Processing Systems (2010)

    Google Scholar 

  17. Huang, C., Loy, C.C., Tang, X.: Local Similarity-Aware Deep Feature Embedding (2016)

    Google Scholar 

  18. O’Mahony, N., Campbell, S., Carvalho, A., et al.: Point Cloud Annotation Methods for 3D Deep Learning. Institute of Electrical and Electronics Engineers (IEEE), pp 1–6 (2020)

    Google Scholar 

  19. Fu, J., Rui, Y.: Advances in deep learning approaches for image tagging. APSIPA Trans. Signal Inf. Process. 6,(2017). https://doi.org/10.1017/ATSIP.2017.12

  20. Xu, H., Caramanis, C., Mannor, S.: Outlier-robust PCA: the high-dimensional case. IEEE Trans. Inf. Theory 59, 546–572 (2013). https://doi.org/10.1109/TIT.2012.2212415

    Article  MathSciNet  MATH  Google Scholar 

  21. Cerioli, A.: Multivariate outlier detection with high-breakdown estimators. J. Am. Stat. Assoc. 105, 147–156 (2010). https://doi.org/10.1198/jasa.2009.tm09147

    Article  MathSciNet  MATH  Google Scholar 

  22. Gong, X., Shen, L., Lu, T.: Refining training samples using median absolute deviation for supervised classification of remote sensing images. J. Indian Soc. Remote Sens. 47(4), 647–659 (2018). https://doi.org/10.1007/s12524-018-0887-7

    Article  Google Scholar 

  23. Wang, Z., Wang, Y.: Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders. BMC Bioinf. 20, 568 (2019). https://doi.org/10.1186/s12859-019-3130-9

    Article  Google Scholar 

  24. Reunanen, N., Räty, T., Jokinen, J.J., Hoyt, T., Culler, D.: Unsupervised online detection and prediction of outliers in streams of sensor data. Int. J. Data Sci. Analyt. 9(3), 285–314 (2019). https://doi.org/10.1007/s41060-019-00191-3

    Article  Google Scholar 

  25. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood Components Analysis (2005)

    Google Scholar 

  26. Hermans, A., Beyer, L., Leibe, B.: In Defense of the Triplet Loss for Person Re-Identification (2017)

    Google Scholar 

  27. Mahbub, U., Sarkar, S., Patel, V.M., Chellappa, R.: Active user authentication for smartphones: a challenge data set and benchmark results. In: 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems, BTAS 2016 (2016). https://doi.org/10.1109/BTAS.2016.7791155

  28. Acien, A., Morales, A., Vera-Rodriguez, R., et al.: Multi lock: mobile active authentication based on multiple biometric and behavioral patterns. MULEA 2019 - 1st International Workshop on Multimodal Understanding and Learning for Embodied Applications, co-located with MM 2019, pp. 53–59 (2019). https://doi.org/10.1145/3347450.3357663

  29. Abavisani, M., Patel, V.M.: Deep sparse representation-based classification. IEEE Signal Process. Lett. 26, 948–952 (2019). https://doi.org/10.1109/LSP.2019.2913022

    Article  Google Scholar 

  30. Nienkötter, A., Jiang, X.: A lower bound for generalized median based consensus learning using kernel-induced distance functions. Pattern Recogn. Lett. 140, 339–347 (2020). https://doi.org/10.1016/j.patrec.2020.11.003

    Article  Google Scholar 

  31. Lin, W., Wang, Y., Gao, J., Li, X.: Deep adaptive feature embedding with local sample distributions for person re-identification. Pattern Recogn. 73, 275–288 (2018). https://doi.org/10.1016/j.patcog.2017.08.029

    Article  Google Scholar 

  32. Lin, X., Duan, Y., Dong, Q., Jiwen, L., Zhou, J.: Deep variational metric learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 714–729. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_42

Download references

Acknowledgments

This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094 and co-funded under the European Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero - the Irish Software Research Centre (www.lero.ie). The authors wish to acknowledge the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall O’. Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahony, N.O., Campbell, S., Carvalho, A., Krpalkova, L., Riordan, D., Walsh, J. (2022). Improving Accuracy and Latency in Image Re-identification by Gallery Database Cleansing. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_60

Download citation

Publish with us

Policies and ethics