Skip to main content

Adjusted Bare Bones Fireworks Algorithm to Guard Orthogonal Polygons

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 284))

  • 1944 Accesses

Abstract

With the growing demand for public security and intelligent life as well as the expansion of the Internet of Things (IoT), it is indispensable to make a plan how to place the minimum number of cameras or guards to achieve secure surveillance. The optimal cameras placement is a hard combinatorial problem, and it can be formulated as seeking the smallest number of guards to cover every point in a complex setting. In this article, we propose an adjusted version of the bare bone fireworks algorithm and one deterministic technique for tackling cameras placement problem. Both versions of novel algorithms have been implemented and tested over two hundreds of randomly generated orthogonal polygons. According to the outcomes presented in the experimental analysis, it can be noticed that the first approach based on metaheuristics beats the deterministic method for practically all instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alihodzic, A.: Fireworks algorithm with new feasibility-rules in solving UAV path planning. In: 2016 3rd International Conference on Soft Computing Machine Intelligence (ISCMI), pp. 53–57 (2016)

    Google Scholar 

  2. Altahir, A.A., et al.: Optimizing visual surveillance sensor coverage using dynamic programming. IEEE Sens. J. 17(11), 3398–3405 (2017)

    Article  Google Scholar 

  3. Bhuiyan, M.Z.A., Wang, G., Cao, J., Wu, J.: Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Trans. Comput. 64(2), 382–395 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bhuiyan, M.Z.A., Wang, G., Cao, J., Wu, J.: Sensor placement with multiple objectives for structural health monitoring. ACM Trans. Sen. Netw. 10(4), 1–45 (2014)

    Article  Google Scholar 

  5. Bjorling-Sachs, I., Souvaine, D.L.: An efficient algorithm for guard placement in polygons with holes. Discrete Comput. Geomet. 13, 77–109 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bodor, R., Drenner, A., Schrater, P., Papanikolopoulos, N.: Optimal camera placement for automated surveillance tasks. J. Intell. Rob. Syst. 50(3), 257–295 (2007)

    Article  Google Scholar 

  7. Chrysostomou, D., Gasteratos, A.: Optimum multi-camera arrangement using a bee colony algorithm. In: 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings, pp. 387–392 (2012)

    Google Scholar 

  8. Chvátal, V.: A combinatorial theorem in plane geometry. J. Combin. Theory Ser. B 18(1), 39–41 (1975)

    Article  MathSciNet  Google Scholar 

  9. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  10. Elnagar, A., Lulu, L.: An art gallery-based approach to autonomous robot motion planning in global environments. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2079–2084 (2005)

    Google Scholar 

  11. Feng, G., Liu, M., Guo, X., Zhang, J., Wang, G.: Genetic algorithm based optimal placement of pir sensor arrays for human localization. In: 2011 IEEE International Conference on Mechatronics and Automation, pp. 1080–1084 (2011)

    Google Scholar 

  12. Fisk, S.: A short proof of Chvátal’s watchman theorem. J. Combin. Theory Ser. B 24(3), 374 (1978)

    Article  MathSciNet  Google Scholar 

  13. Gonzalez-Barbosa, J., Garcia-Ramirez, T., Salas, J., Hurtado-Ramos, J., Rico-Jimenez, J.: Optimal camera placement for total coverage. In: 2009 IEEE International Conference on Robotics and Automation, pp. 844–848 (2009)

    Google Scholar 

  14. Györi, E., Hoffmann, F., Kriegel, K., Shermer, T.: Generalized guarding and partitioning for rectilinear polygons. Comput. Geom. 6(1), 21–44 (1996)

    Article  MathSciNet  Google Scholar 

  15. Hoffmann, F., Kaufmann, M., Kriegel, K.: The art gallery theorem for polygons with holes. In: 1991 Proceedings 32nd Annual Symposium of Foundations of Computer Science, pp. 39–48, October 1991

    Google Scholar 

  16. Islam, S.H., Vijayakumar, P., Bhuiyan, M.Z.A., Amin, R., Rajeev M.V., Balusamy, B.: A provably secure three-factor session initiation protocol for multimedia big data communications. IEEE Internet Things J. 5(5), 3408–3418 (2018)

    Google Scholar 

  17. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen. SIAM J. Algebraic Discrete Methods 4(2), 194–206 (1983)

    Article  MathSciNet  Google Scholar 

  18. Kamkar, S., Ghezloo, F., Moghaddam, H.A., Borji, A., Lashgari, R.: Multiple-target tracking in human and machine vision. PLOS Comput. Biol. 16(4), 1–28 (2020)

    Article  Google Scholar 

  19. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Comput. Geom. 39(3), 219–228 (2008)

    Article  MathSciNet  Google Scholar 

  20. Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)

    Article  MathSciNet  Google Scholar 

  21. Li, J., Zheng, S., Tan, Y.: Adaptive fireworks algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3214–3221 (2014)

    Google Scholar 

  22. Li, J., Zheng, S., Tan, Y.: The effect of information utilization: introducing a novel guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–166 (2017)

    Article  Google Scholar 

  23. Li, J., Tan, Y.: The bare bones fireworks algorithm: a minimalist global optimizer. Appl. Soft Comput. 62, 454–462 (2018)

    Article  Google Scholar 

  24. Liu, J., Fookes, C., Wark, T., Sridharan, S.: On the statistical determination of optimal camera configurations in large scale surveillance networks. In: Computer Vision - ECCV 2012, pp. 44–57. Springer, Heidelberg (2012)

    Google Scholar 

  25. Liu, J., Sridharan, S., Fookes, C.: Recent advances in camera planning for large area surveillance: a comprehensive review. ACM Comput. Surv. 49(1), 1–37 (2016)

    Article  Google Scholar 

  26. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  27. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  28. O’Rourke, J., Supowit, K.: Some np-hard polygon decomposition problems. IEEE Trans. Inf. Theory 29(2), 181–190 (1983)

    Article  MathSciNet  Google Scholar 

  29. Schuchardt, D., Hecker, H.-D.: Two np-hard art-gallery problems for ortho-polygons. Math. Log. Q. 41(2), 261–267 (1995)

    Article  MathSciNet  Google Scholar 

  30. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Advances in Swarm Intelligence. LNCS, vol. 6145, pp. 355–364 (2010)

    Google Scholar 

  31. Tomás, A.P., Bajuelos, A.L.: Generating random orthogonal polygons. In: Conejo, R., Urretavizcaya, M., Pérez-de-la Cruz, J.-L. (eds.) Current Topics in Artificial Intelligence, LNCS. vol. 3040, pp. 364–373. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25945-9_36

  32. Tuba, E., Hrosik, R.C., Alihodzic, A., Jovanovic, R., Tuba, M.: Support vector machine optimized by fireworks algorithm for handwritten digit recognition. In: Simian, D., Stoica, L.F. (eds.) Modelling and Development of Intelligent Systems, vol. 1126, pp. 187–199. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-39237-6_13

    Chapter  Google Scholar 

  33. Tuba, M., Bacanin, N., Alihodzic, A.: Multilevel image thresholding by fireworks algorithm. In: 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), pp. 326–330 (2015)

    Google Scholar 

  34. Wang, T., et al.: Energy-efficient relay tracking with multiple mobile camera sensors. Comput. Netw. 133, 130–140 (2018)

    Article  Google Scholar 

  35. Yao, Y., Chen, C., Abidi, B., Page, D., Koschan, A., Abidi, M.: Can you see me now? Sensor positioning for automated and persistent surveillance. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(1), 101–115 (2010)

    Article  Google Scholar 

  36. Yu, C., Tan, Y.: Fireworks algorithm with covariance mutation. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1250–1256 (2015)

    Google Scholar 

  37. Zhao, J., Cheung, S., Nguyen, T.: Optimal camera network configurations for visual tagging. IEEE J. Sel. Top. Signal Process. 2(4), 464–479 (2008)

    Article  Google Scholar 

  38. Zheng, S., Janecek, A., Li, J., Tan, Y.: Dynamic search in fireworks algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3222–3229 (2014)

    Google Scholar 

  39. Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(1), 27–41 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adis Alihodzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alihodzic, A., Hasanspahic, D., Cunjalo, F., Smajlovic, H. (2021). Adjusted Bare Bones Fireworks Algorithm to Guard Orthogonal Polygons. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_26

Download citation

Publish with us

Policies and ethics