Skip to main content

Promize - Blockchain and Self Sovereign Identity Empowered Mobile ATM Platform

  • Conference paper
  • First Online:
Intelligent Computing

Abstract

Banks provide interactive money withdrawal/payment facilities, such as ATM, debit and credit card systems. With these systems, customers could withdraw money and make payments without visiting a bank. However, traditional ATM, debit and credit card systems inherit several weaknesses such as limited ATM facilities in rural areas, the high initial cost of ATM deployment, potential security issues in ATM systems, high inter-bank transaction fees etc. Through this research, we propose a blockchain-based peer-to-peer money transfer system “Promize” to address these limitations. The Promize platform provides a blockchain-based, low cost, peer-to-peer money transfer system as an alternative for traditional ATM system and debit/credit card system. Promize provides a self-sovereign identity empowered mobile wallet for its end users. With this, users can withdraw money from registered banking authorities (e.g. shops, outlets etc.) or their friends without going to an ATM. Any user in the Promize platform can act as an ATM, which is introduced as a mobile ATM. The Promize platform provides blockchain-based low-cost inter-bank transaction processing, thereby reducing the high inter-bank transaction fee. The Promize platform guarantees data privacy, confidentiality, non-repudiation, integrity, authenticity and availability when conducting electronic transactions using the blockchain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akka documentation

    Google Scholar 

  2. Akka streams documentation

    Google Scholar 

  3. The go programming language

    Google Scholar 

  4. Docker documentation, August 2018

    Google Scholar 

  5. Androulaki, E., et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p. 30. ACM (2018)

    Google Scholar 

  6. Baars, D.S.: Towards self-sovereign identity using blockchain technology. Master’s thesis, University of Twente (2016)

    Google Scholar 

  7. Bandara, E., et al.: Mystiko–blockchain meets big data. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3024–3032. IEEE (2018)

    Google Scholar 

  8. Bandara, E., Ng, W.K., Ranasinghe, N.: Aplos: smart contracts made smart. In: BlockSys 2019 (2019)

    Google Scholar 

  9. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and kubernetes. Queue 14(1), 70–93 (2016)

    Article  Google Scholar 

  10. Buterin, V., et al.: A next-generation smart contract and decentralized application platform. white paper (2014)

    Google Scholar 

  11. Chen, P.-W., Jiang, B.-S., Wang, C.-H.: Blockchain-based payment collection supervision system using pervasive bitcoin digital wallet. In: 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 139–146. IEEE (2017)

    Google Scholar 

  12. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. arXiv preprintarXiv:1505.06895 (2015)

  13. Davis, A.L.: Akka streams. In: Reactive Streams in Java, pp. 57–70. Springer (2019)

    Google Scholar 

  14. Destounis, A., Paschos, G.S., Koutsopoulos, I.: Streaming big data meets backpressure in distributed network computation. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

    Google Scholar 

  15. Ebadi, Z.: Advance banking system features with emphasis on core banking. In: The 9th International Conference on Advanced Communication Technology, vol. 1, pp. 573–576. IEEE (2007)

    Google Scholar 

  16. Eykholt, E., Meredith, L.G. and Denman, J.: Rchain architecture documentation (2017)

    Google Scholar 

  17. Fisher, J., Sanchez, M.H.: Authentication and verification of digital data utilizing blockchain technology, September 29 2016. US Patent App. 15/083,238

    Google Scholar 

  18. Gupta, M.: Akka essentials. Packt Publishing Ltd. (2012)

    Google Scholar 

  19. Hammudoglu, J.S., et al.: Portable trust: biometric-based authentication and blockchain storage for self-sovereign identity systems. arXiv preprintarXiv:1706.03744 (2017)

  20. Hewitt, C.: Actor model of computation: scalable robust information systems. arXiv preprintarXiv:1008.1459 (2010)

  21. Yining, H., et al.: A delay-tolerant payment scheme based on the ethereum blockchain. IEEE Access 7, 33159–33172 (2019)

    Article  Google Scholar 

  22. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107 (1989)

    Article  Google Scholar 

  23. Jones, M.B.: The emerging json-based identity protocol suite. In: W3C Workshop on Identity in the Browser, pp. 1–3 (2011)

    Google Scholar 

  24. Jonsson, J., Kaliski, B.: Public-key cryptography standards (pkcs)# 1: Rsa cryptography specifications version 2.1. Technical report, RFC 3447, February 2003

    Google Scholar 

  25. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: high-performance broadcast for primary-backup systems. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN), pp. 245–256. IEEE (2011)

    Google Scholar 

  26. Karunanayake, A., De Zoysa, K., Muftic, S.: Mobile ATM for developing countries, January 2008

    Google Scholar 

  27. Khawas, C., Shah, P.: Application of firebase in android app development-a study. Int. J. Comput. Appl. 179(46), 49–53 (2018)

    Google Scholar 

  28. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

    Article  Google Scholar 

  29. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2), 133–169 (1998)

    Article  Google Scholar 

  30. Li, Z., Sun, Q., Lian, Y., Giusto, D.D.: An association-based graphical password design resistant to shoulder-surfing attack. In: 2005 IEEE International Conference on Multimedia and Expo, pp. 245–248. IEEE (2005)

    Google Scholar 

  31. Luka, M.K. and Frank, I.A.: The impacts of ICTs on banks. Editorial Preface 3(9), (2012)

    Google Scholar 

  32. Lundqvist, T., de Blanche, A., Andersson, H.R.H.: Thing-to-thing electricity micro payments using blockchain technology. In: 2017 Global Internet of Things Summit (GIoTS), pp. 1–6. IEEE (2017)

    Google Scholar 

  33. MBSL. MBSL bank

    Google Scholar 

  34. McConaghy, T., et al.: Bigchaindb: a scalable blockchain database. white paper, BigChainDB (2016)

    Google Scholar 

  35. Merkel, D.: Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014(239), 2 (2014)

    Google Scholar 

  36. Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C.: A survey on essential components of a self-sovereign identity. Comput. Sci. Rev. 30, 80–86 (2018)

    Article  Google Scholar 

  37. Othman, A., Callahan, J.: The horcrux protocol: a method for decentralized biometric-based self-sovereign identity. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2018)

    Google Scholar 

  38. Reese, W.: Nginx: the high-performance web server and reverse proxy. Linux J. 2008(173), 2 (2008)

    Google Scholar 

  39. Schmager, F., Cameron, N., Noble, J.: Evaluating the go programming language with design patterns. In: Evaluation and Usability of Programming Languages and Tools, p. 10. ACM (2010)

    Google Scholar 

  40. Schwiderski-Grosche, S., Knospe, H.: Secure mobile commerce. Electron. Commun. Eng. J. 14(5), 228–238 (2002)

    Article  Google Scholar 

  41. Sidhu, J.: Syscoin: a peer-to-peer electronic cash system with blockchain-based services for e-business. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE (2017)

    Google Scholar 

  42. Thönes, J.: Microservices. IEEE softw. 32(1), 116–116 (2015)

    Google Scholar 

  43. Zhang, Y., Deng, R.H., Liu, X., Zheng, D.: Blockchain based efficient and robust fair payment for outsourcing services in cloud computing. Inf. Sci. 462, 262–277 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was funded by the Department of Energy (DOE) Office of Fossil Energy (FE) (Federal Grant #DE-FE0031744).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eranga Bandara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bandara, E. et al. (2021). Promize - Blockchain and Self Sovereign Identity Empowered Mobile ATM Platform. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_63

Download citation

Publish with us

Policies and ethics