Abstract
We provide algorithms for computing the Karcher mean of positive definite semi-infinite quasi-Toeplitz matrices. After showing that the power mean of quasi-Toeplitz matrices is a quasi-Toeplitz matrix, we obtain a first algorithm based on the fact that the Karcher mean is the limit of a family of power means. A second algorithm, that is shown to be more effective, is based on a generalization to the infinite-dimensional case of a reliable algorithm for computing the Karcher mean in the finite-dimensional case. Numerical tests show that the Karcher mean of infinite-dimensional quasi-Toeplitz matrices can be effectively approximated with a finite number of parameters.
The work of the first and second authors is partly supported by the INdAM through a GNCS project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Recently, the term “Karcher mean” for matrices is falling out of use, in favor of “Riemannian center of mass” or “matrix geometric mean”. We kept the former here, because we deal with operators, with no underlying Riemannian structure.
References
Ando, T., Li, C.-K., Mathias, R.: Geometric means. Linear Algebra Appl. 385(1), 305–334 (2004)
Bini, D.A., Ehrhardt, T., Karlovich, A.Y., Spitkovsky, I.M. (eds.): Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Series: Operator Theory: Advances and Applications. Birkhäuser (2017)
Bini, D.A., Iannazzo, B.: A note on computing Matrix Geometric Means. Adv. Comput. Math. 35–2(4), 175–192 (2011)
Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)
Bini, D.A., Iannazzo, B., Meng, J.: Geometric mean of quasi-Toeplitz matrices: arXiv preprint. https://arxiv.org/abs/2102.04302 (2021)
Bini, D.A., Massei, S., Meini, B.: Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes. Math. Comput. 87(314), 2811–2830 (2018)
Bini, D.A., Massei, S., Meini, B.: On functions of quasi-Toeplitz matrices. Sb. Math. 208(11), 56–74 (2017). 1628
Bini, D.A., Massei, S., Meini, B., Robol, L.: On quadratic matrix equations with infinite size coefficients encountered in QBD stochastic processes. Numer. Linear Algebra Appl. 25(6), e2128 (2018)
Bini, D.A., Massei, S., Meini, B., Robol, L.: A computational framework for two-dimensional random walks with restarts. SIAM J. Sci. Comput. 42(4), A2108–A2133 (2020)
Bini, D.A., Meini, B., Poloni, F.: An effective matrix geometric mean satisfying the Ando-Li-Mathias properties. Math. Comput. 79(269), 437–452 (2010)
Bini, D.A., Massei, S., Robol, L.: Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox. Numer. Algorithms 81(2), 741–769 (2019). https://doi.org/10.1007/s11075-018-0571-6
Bini, D.A., Meini, B., Meng, J.: Solving quadratic matrix equations arising in random walks in the quarter plane. SIAM J. Matrix Anal. Appl. 41(2), 691–714 (2020)
Böttcher, A., Grudsky, S.M.: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Birkhäuser Verlag, Basel (2000)
Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. SIAM (2005)
Böttcher, A., Silbermannn, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1426-7
Chan, R.H.-F., Jin, X.-Q.: An Introduction to Iterative Toeplitz Solvers, SIAM (2007)
Chouaieb, N., Iannazzo, B., Moakher M.: Geometries on the cone of positive-definite matrices derived from the power potential and their relation to the power means: arXiv preprint https://arxiv.org/abs/2102.10279 (2021)
Fasi, M., Iannazzo, B.: Computing the weighted geometric mean of two large-scale matrices and its inverse times a vector. SIAM J. Matrix Anal. Appl. 39(1), 178–203 (2018)
Yuan, X., Huang, W., Absil, P.-A., Gallivan, K.A.: Computing the matrix geometric mean: Riemannian versus Euclidean conditioning, implementation techniques, and a Riemannian BFGS method. Numer. Linear Algebra Appl. 27(5), e2321 (2020)
Iannazzo, B., Porcelli, M.: The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 38(1), 495–517 (2018)
Kubo, F., Ando, T.: Means of positive Linear Operators. Math. Ann. 246(3), 205–224 (1980)
Lapuyade-Lahorgue, J., Barbaresco, F.: Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar. In: 2008 IEEE Radar Conference, pp. 1–6 (2008)
Lawson, J., Lim, Y.: Karcher means and Karcher equations of positive definite operators. Trans. Amer. Math. Soc. Ser. B 1, 1–22 (2014)
Lim, Y., Pálfia, M.: Matrix power means and the Karcher mean. J. Funct. Anal. 262(4), 1498–1514 (2012)
Lim, Y., Pálfia, M.: Existence, uniqueness and an ODE approach to the \(L^1\) Karcher mean. Adv. Math. 376, 107435 (2021)
Nakamura, N.: Geometric means of positive operators. Kyungpook Math. J. 49(1), 167–181 (2009)
Yang, L., Arnaudon, M., Barbaresco, F.: Geometry of covariance matrices and computation of median. In: Bayesian Inference and Maximum Entropy Methods in Science and Engineering, volume 1305 of AIP Conference Proceedings, pp. 479–486. American Institute of Physics, Melville (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bini, D.A., Iannazzo, B., Meng, J. (2021). Algorithms for Approximating Means of Semi-infinite Quasi-Toeplitz Matrices. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-80209-7_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80208-0
Online ISBN: 978-3-030-80209-7
eBook Packages: Computer ScienceComputer Science (R0)