Skip to main content

Algorithms for Approximating Means of Semi-infinite Quasi-Toeplitz Matrices

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

  • 2651 Accesses

Abstract

We provide algorithms for computing the Karcher mean of positive definite semi-infinite quasi-Toeplitz matrices. After showing that the power mean of quasi-Toeplitz matrices is a quasi-Toeplitz matrix, we obtain a first algorithm based on the fact that the Karcher mean is the limit of a family of power means. A second algorithm, that is shown to be more effective, is based on a generalization to the infinite-dimensional case of a reliable algorithm for computing the Karcher mean in the finite-dimensional case. Numerical tests show that the Karcher mean of infinite-dimensional quasi-Toeplitz matrices can be effectively approximated with a finite number of parameters.

The work of the first and second authors is partly supported by the INdAM through a GNCS project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Recently, the term “Karcher mean” for matrices is falling out of use, in favor of “Riemannian center of mass” or “matrix geometric mean”. We kept the former here, because we deal with operators, with no underlying Riemannian structure.

References

  1. Ando, T., Li, C.-K., Mathias, R.: Geometric means. Linear Algebra Appl. 385(1), 305–334 (2004)

    Google Scholar 

  2. Bini, D.A., Ehrhardt, T., Karlovich, A.Y., Spitkovsky, I.M. (eds.): Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Series: Operator Theory: Advances and Applications. Birkhäuser (2017)

    Google Scholar 

  3. Bini, D.A., Iannazzo, B.: A note on computing Matrix Geometric Means. Adv. Comput. Math. 35–2(4), 175–192 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bini, D.A., Iannazzo, B., Meng, J.: Geometric mean of quasi-Toeplitz matrices: arXiv preprint. https://arxiv.org/abs/2102.04302 (2021)

  6. Bini, D.A., Massei, S., Meini, B.: Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes. Math. Comput. 87(314), 2811–2830 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bini, D.A., Massei, S., Meini, B.: On functions of quasi-Toeplitz matrices. Sb. Math. 208(11), 56–74 (2017). 1628

    Article  MathSciNet  Google Scholar 

  8. Bini, D.A., Massei, S., Meini, B., Robol, L.: On quadratic matrix equations with infinite size coefficients encountered in QBD stochastic processes. Numer. Linear Algebra Appl. 25(6), e2128 (2018)

    Google Scholar 

  9. Bini, D.A., Massei, S., Meini, B., Robol, L.: A computational framework for two-dimensional random walks with restarts. SIAM J. Sci. Comput. 42(4), A2108–A2133 (2020)

    Article  MathSciNet  Google Scholar 

  10. Bini, D.A., Meini, B., Poloni, F.: An effective matrix geometric mean satisfying the Ando-Li-Mathias properties. Math. Comput. 79(269), 437–452 (2010)

    Article  MathSciNet  Google Scholar 

  11. Bini, D.A., Massei, S., Robol, L.: Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox. Numer. Algorithms 81(2), 741–769 (2019). https://doi.org/10.1007/s11075-018-0571-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Bini, D.A., Meini, B., Meng, J.: Solving quadratic matrix equations arising in random walks in the quarter plane. SIAM J. Matrix Anal. Appl. 41(2), 691–714 (2020)

    Article  MathSciNet  Google Scholar 

  13. Böttcher, A., Grudsky, S.M.: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Birkhäuser Verlag, Basel (2000)

    Google Scholar 

  14. Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. SIAM (2005)

    Google Scholar 

  15. Böttcher, A., Silbermannn, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1426-7

    Book  Google Scholar 

  16. Chan, R.H.-F., Jin, X.-Q.: An Introduction to Iterative Toeplitz Solvers, SIAM (2007)

    Google Scholar 

  17. Chouaieb, N., Iannazzo, B., Moakher M.: Geometries on the cone of positive-definite matrices derived from the power potential and their relation to the power means: arXiv preprint https://arxiv.org/abs/2102.10279 (2021)

  18. Fasi, M., Iannazzo, B.: Computing the weighted geometric mean of two large-scale matrices and its inverse times a vector. SIAM J. Matrix Anal. Appl. 39(1), 178–203 (2018)

    Article  MathSciNet  Google Scholar 

  19. Yuan, X., Huang, W., Absil, P.-A., Gallivan, K.A.: Computing the matrix geometric mean: Riemannian versus Euclidean conditioning, implementation techniques, and a Riemannian BFGS method. Numer. Linear Algebra Appl. 27(5), e2321 (2020)

    Google Scholar 

  20. Iannazzo, B., Porcelli, M.: The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 38(1), 495–517 (2018)

    Google Scholar 

  21. Kubo, F., Ando, T.: Means of positive Linear Operators. Math. Ann. 246(3), 205–224 (1980)

    Article  MathSciNet  Google Scholar 

  22. Lapuyade-Lahorgue, J., Barbaresco, F.: Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar. In: 2008 IEEE Radar Conference, pp. 1–6 (2008)

    Google Scholar 

  23. Lawson, J., Lim, Y.: Karcher means and Karcher equations of positive definite operators. Trans. Amer. Math. Soc. Ser. B 1, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  24. Lim, Y., Pálfia, M.: Matrix power means and the Karcher mean. J. Funct. Anal. 262(4), 1498–1514 (2012)

    Article  MathSciNet  Google Scholar 

  25. Lim, Y., Pálfia, M.: Existence, uniqueness and an ODE approach to the \(L^1\) Karcher mean. Adv. Math. 376, 107435 (2021)

    Google Scholar 

  26. Nakamura, N.: Geometric means of positive operators. Kyungpook Math. J. 49(1), 167–181 (2009)

    Article  MathSciNet  Google Scholar 

  27. Yang, L., Arnaudon, M., Barbaresco, F.: Geometry of covariance matrices and computation of median. In: Bayesian Inference and Maximum Entropy Methods in Science and Engineering, volume 1305 of AIP Conference Proceedings, pp. 479–486. American Institute of Physics, Melville (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bini, D.A., Iannazzo, B., Meng, J. (2021). Algorithms for Approximating Means of Semi-infinite Quasi-Toeplitz Matrices. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics