Skip to main content

Schrödinger Problem for Lattice Gases: A Heuristic Point of View

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

Abstract

Aim of this paper is to take the first steps in the study of the Schrödinger problem for lattice gases (SPLG), which we formulate relying on classical results in large deviations theory. Our main contributions are a dynamical characterization of optimizers through a coupled system of PDEs and a precise study of the evolution and convexity of the quasi-potential along Schrödinger bridges. In particular, our computations show that, although SPLG does not admit a variational interpretation through Otto calculus, the fundamental geometric properties of the classical Schrödinger problem for independent particles still admit a natural generalization. These observations motivate the development of a Riemannian calculus on the space of probability measures associated with the class of geodesic distances studied in [3]. All our computations are formal, further efforts are needed to turn them into rigorous results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Backhoff, J., Conforti, G., Gentil, I., Léonard, C.: The mean field Schrödinger problem: ergodic behavior, entropy estimates and functional inequalities. Prob. Theory Relat. Fields 178, 475–530 (2020). https://doi.org/10.1007/s00440-020-00977-8

    Article  MATH  Google Scholar 

  2. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87(2), 593 (2015)

    Article  MathSciNet  Google Scholar 

  3. Carrillo, J.A., Lisini, S., Savaré, G., Slepčev, D.: Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258(4), 1273–1309 (2010)

    Article  MathSciNet  Google Scholar 

  4. Conforti, G.: A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost. Prob. Theory Relat. Fields 174, 1–47 (2018). https://doi.org/10.1007/s00440-018-0856-7

    Article  MATH  Google Scholar 

  5. Conforti, G., Tamanini, L.: A formula for the time derivative of the entropic cost and applications. J. Funct. Anal. 280(11), 108964 (2021)

    Article  MathSciNet  Google Scholar 

  6. Donsker, M.D., Varadhan, S.R.S.: Large deviations from a hydrodynamic scaling limit. Commun. Pure Appl. Math. 42(3), 243–270 (1989)

    Article  MathSciNet  Google Scholar 

  7. Gentil, I., Léonard, C., Ripani, L.: Dynamical aspects of generalized Schrödinger problem via otto calculus-a heuristic point of view (2018). To appear in Rev. Mat. Iberoam

    Google Scholar 

  8. Kipnis, C., Olla, S., Varadhan, S.R.S.: Hydrodynamics and large deviation for simple exclusion processes. Commun. Pure Appl. Math. 42(2), 115–137 (1989)

    Article  MathSciNet  Google Scholar 

  9. Léger, F., Li, W.: Hopf Cole transformation via generalized Schrödinger bridge problem. J. Differ. Equ. 274, 788–827 (2021)

    Article  Google Scholar 

  10. Léonard, C.: On the convexity of the entropy along entropic interpolations. In: Measure Theory in Non-Smooth Spaces, pp. 194–242. Sciendo Migration (2017)

    Google Scholar 

  11. McCann, R.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  Google Scholar 

  12. Monsaingeon, L., Tamanini, L., Vorotnikov, D.: The dynamical Schrödinger problem in abstract metric spaces. Preprint at arXiv:2012.12005 (2020)

  13. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Conforti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiarini, A., Conforti, G., Tamanini, L. (2021). Schrödinger Problem for Lattice Gases: A Heuristic Point of View. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_95

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics