
SAT-Based Rigorous Explanations
for Decision Lists ?

Alexey Ignatiev1 and Joao Marques-Silva2

1 Monash University, Melbourne, Australia
alexey.ignatiev@monash.edu

2 IRIT, CNRS, Toulouse, France
joao.marques-silva@irit.fr

Abstract. Decision lists (DLs) find a wide range of uses for classification
problems in Machine Learning (ML), being implemented in a number
of ML frameworks. DLs are often perceived as interpretable. However,
building on recent results for decision trees (DTs), we argue that inter-
pretability is an elusive goal for some DLs. As a result, for some uses
of DLs, it will be important to compute (rigorous) explanations. Unfor-
tunately, and in clear contrast with the case of DTs, this paper shows
that computing explanations for DLs is computationally hard. Motivated
by this result, the paper proposes propositional encodings for comput-
ing abductive explanations (AXps) and contrastive explanations (CXps)
of DLs. Furthermore, the paper investigates the practical efficiency of a
MARCO-like approach for enumerating explanations. The experimental
results demonstrate that, for DLs used in practical settings, the use of
SAT oracles offers a very efficient solution, and that complete enumera-
tion of explanations is most often feasible.

1 Introduction

Decision lists (DLs) [64] find a wide range of uses for classification problems in
Machine Learning (ML) [1,2,12,15–18,65,71–73], being implemented in a number
of ML frameworks (e.g. [10,22]). DLs can be viewed as ordered rules, and so are
often perceived as interpretable3. This explains in part the recent interest in
DLs [1, 2, 12, 65, 71–73], most of which is premised on the interpretability of
DLs. However, building on recent results for decision trees (DTs) [37], which
demonstrate the possible non-interpretability of DTs when representing specific
functions, we show that interpretability can also be an elusive goal for some

? This work is supported by the AI Interdisciplinary Institute ANITI, funded by the
French program “Investing for the Future - PIA3” under Grant agreement no ANR-
19-PI3A-0004.

3 Interpretability is a subjective concept, for which no rigorous accepted definition
exists [46]. As clarified later in the paper, for a given pair ML model and instance,
we equate interpretability with how succinct is the justification for the model’s pre-
diction.

ar
X

iv
:2

10
5.

06
78

2v
1

 [
cs

.A
I]

 1
4

M
ay

 2
02

1

mailto:alexey.ignatiev@monash.edu
mailto:joao.marques-silva@irit.fr

2 A. Ignatiev and J. Marques-Silva

DLs. As a result, and for some concrete applications of DLs, it is important to
compute (rigorous) explanations.

Explanations can be broadly categorized into heuristic [47, 62, 63] and non-
heuristic [32, 66]. Recent work has provided extensive evidence regarding the
lack of quality of heuristic explanation approaches [11, 25, 34, 40, 57, 68]. Non-
heuristic (or rigorous) approaches for computing explanations can be organized
into abductive (AXp) [19, 32, 33, 66] and contrastive (CXp) [31, 54]. (Abductive
explanations are also referred to as PI-explanations [66] (i.e. prime implicant
explanations), since these represent subset-minimal sets of feature value pairs
that are sufficient for a prediction.) Most work on rigorous explanations either
exploits knowledge compilation approaches [3,19,66,67], or approaches based on
iterative calls to some oracle for NP (e.g. SAT, SMT, MILP, etc.) [31–33]. As a
result, improvements to automated reasoning tools, can have a profound impact
on the deployment of rigorous explanation approaches.

Furthermore, recent work proposed polynomial time algorithms for finding
explanations of a number of ML models, including DTs [37], naive-Bayes clas-
sifiers [49], and also different knowledge representation languages [3]. Unfortu-
nately, and in contrast with these recent tractability results, this paper proves
that finding one PI-explanation for a DL is NP-hard.

Motivated by the NP-hardness of finding explanations of DLs, the paper
proposes propositional encodings for computing abductive and contrastive ex-
planations of DLs. Furthermore, the paper investigates the practical efficiency
of a MARCO-like [43] approach for enumerating explanations. The experimen-
tal results demonstrate that, for DLs used in practical settings, the use of SAT
oracles offers a very efficient solution, and that complete enumeration of expla-
nations is most often feasible.

The paper is organized as follows. The notation and definitions used through-
out the paper are introduced in Section 2. Section 3 proves the NP-hardness of
finding rigorous explanations for DLs. In addition, this section develops a propo-
sitional encoding for finding one AXp or one CXp, and briefly overviews the
online enumeration of explanations. Section 4 presents the experimental results.
The paper concludes in Section 5.

2 Preliminaries

2.1 Propositional Satisfiability

Definitions standard in propositional satisfiability (SAT) and maximum satis-
fiability (MaxSAT) solving are assumed [8]. In what follows, we will assume
formulas to be propositional. A conjunction of literals is referred to as term
while a disjunction of literals is referred to as clause; also note that a literal
is either a Boolean variable or its negation. Whenever convenient, terms and
clauses are treated as sets of literals. A formula is said to be in conjunctive or
disjunctive normal form (CNF or DNF, respectively) if it is a conjunction of
clauses or disjunction of terms, respectively. Set theory notation will be also
used with respect to CNF and DNF formulas when necessary.

SAT-Based Rigorous Explanations for Decision Lists 3

A truth assignment µ is a mapping from the set of variables to {0, 1}. An
assignment is said to satisfy a literal l (¬l, resp.) if it maps variable l to 1 (to 0,
resp.). A clause is said to be satisfied by assignment µ if µ satisfies at least one
of its literals. If for a CNF formula φ there exists an assignment µ that satisfies
all clauses of φ, formula φ is referred to as satisfiable and µ is its satisfying
assignment (or model). In addition, we use the notation � to denote entailment,
i.e. φ1 �φ2 if any model of φ1 is also a model of φ2.

One of the central concepts in rigorous explainable AI (XAI) [32, 66] is of
prime implicants as defined below.

Definition 1. A term π is an implicant of formula φ if π �φ. An implicant π
of φ is called prime if none of the proper subsets π′ (π is an implicant of φ.

In the context of unsatisfiable formulas, the maximum satisfiability (MaxSAT)
problem is to find a truth assignment that maximizes the number of satisfied
clauses. A number of variants of MaxSAT exist [8, Chapters 23 and 24]. Here-
inafter, we are mostly interested in Partial (Unweighted) MaxSAT, which can
be formulated as follows. The formula φ is represented as a conjunction of hard
clauses H, which must be satisfied, and soft clauses S, which represent a pref-
erence to satisfy those clauses, i.e. φ = H ∧ S. Therefore, the Partial MaxSAT
problem consists in finding an assignment that satisfies all the hard clauses and
maximizes the total number of satisfied soft clauses. In the following, the con-
cepts of minimal unsatisfiable subsets (MUSes) and minimal correction subsets
(MCSes) taking into account the hard clauses H will also be helpful. Concretely,
consider unsatisfiable CNF formula φ = H ∧ S with H and S defined as the set
of hard and soft clauses, respectively.

Definition 2. A subset of soft clausesM⊆ S is a Minimal Unsatisfiable Subset
(MUS) iff H ∪M is unsatisfiable and ∀M′(M, H ∪M′ is satisfiable.

Definition 3. A subset of soft clauses C ⊆ S is a Minimal Correction Subset
(MCS) iff H ∪ F \ C is satisfiable and ∀C′(C , H ∪ F \ C′ is unsatisfiable.

MUSes and MCSes of a CNF formula are known to be related through the
minimal hitting set (MHS) duality [5,9,45,61], which has been recently exploited
in a number of practical settings [21,27,30,36,45] including XAI [31].

2.2 Classification Problems, Decision Lists, and Explanations

This section introduces definitions and notation related with classification prob-
lems in ML, but also formal definitions of explanations proposed in recent
work [32,66].

Classification problems. We consider a classification problem, characterized
by a set of (categorical) features F = {1, . . . ,m}, and by a set of classes K =
{c1, . . . , cK}. Each feature j ∈ F is characterized by a domain Di. As a result,
feature space is defined as F = D1 ×D2 × . . .×Dm. A specific point in feature

4 A. Ignatiev and J. Marques-Silva

τ(x) =

⊕ if [2x1 − x2 > 1]

	 if [2x1 − x2 ≤ 1]

(a) Example linear classifier

R0: IF x1 THEN ⊕
R1: ELSE IF x2 THEN ⊕
Rdef: ELSE THEN 	

(b) Example decision list

R0: IF x1 THEN ⊕
R1: IF x2 THEN ⊕
R2: IF ¬x1 ∧ ¬x2 THEN 	

(c) Example decision set

Fig. 1: Example classifiers

space is represented by v = (v1, . . . , vm). A point v in feature space denotes
an instance (or an example). Moreover, we use x = (x1, . . . , xm) to denote an
arbitrary point in feature space. In general, when referring to the value of a
feature j ∈ F , we will use a variable xj , with xj taking values from Dj . (To keep
the notation simple, we opt not to introduce an assignment function, mapping
each feature j to some value in Dj .) For simplicity, throughout this paper we will
restrict K to two classes, i.e. K = {⊕,	}. However, most of the ideas described
in this document also apply in the more general case of K with more than two
elements; the general case of non-binary classification is also considered in the
experimental results presented in Section 4. (In settings where K = {⊕,	}, we
will also equate ⊕ with 1, and 	 with 0.)

A classifier implements a total classification function τ : F → K. In some
settings, e.g. when computing explanations, it will be convenient to represent
the classification function as a decision predicate τc : F → {0, 1}, parametrized
by some fixed class c ∈ K, and such that ∀(x ∈ F).τc(x)↔ (τ(x) = c).

Example 1. To illustrate the definitions above, we consider a very simple linear
classifier, defined as follows. Let F = {1, 2}, with D1 = D2 = {0, 1, 2}, and
let K = {	,⊕}. As a result, feature space is given by F = {0, 1, 2} × {0, 1, 2}.
Furthermore, the classification function associated with the classifier is shown
in Figure 1a. Concretely, the prediction is ⊕ if 2x1−x2 > 1, and it is 	 otherwise.

ut

Decision lists (DLs) & decision sets (DSs). A rule is of the form “IF an-
tecedent THEN prediction”, where the antecedent is of the form

∧
feature-literals.

The interpretation of a rule is that if the antecedent is consistent (i.e. all the lit-
erals are true), then the rule fires and the prediction is the one associated with
the rule. A decision list (DL) [64] is an ordered list of rules, whereas a decision
set (DS) [14,39] is an unordered list of rules.

Throughout the paper, we will consider ordered sets of rule indices R =
{1, . . . , R}, such that for i ∈ R, we will use c, l and o to denote, respectively,
the class associated with rule i, the set of literals associated with rule i and the
order of rule i.

Example 2. Consider another classifier. Let F = {1, 2}, with D1 = D2 = {0, 1},
and so F = {0, 1}×{0, 1}. The decision list for the classifier is shown in Figure 1b

SAT-Based Rigorous Explanations for Decision Lists 5

while an equivalent decision set is shown in Figure 1c. The classification function
for the DL can be represented as follows:

τ(x) =

⊕ if [(x1) ∨ (¬x1 ∧ x2)]

	 if [(¬x1 ∧ ¬x2)]

(Note how the lack of order in DS rules results in a simpler classifier representa-
tion τ(x) for class ⊕, e.g. it can be explicitly represented as x1 ∨ x2 since rules
R0 and R1 are unordered in the decision set of Figure 1c.) ut

Note that following the standard convention, we will always assume that DLs
have a default rule, with no literals, that fires when for all the preceding rules,
the conjunction of literals associated with that rule is inconsistent. An example
default rule for the DL shown in Example 2 is marked as Rdef.

Interpretability & explanations. Interpretability is generally accepted to be
a subjective concept, without a formal definition [46]. In this paper we measure
interpretability in terms of the overall succinctness of the information provided
by an ML model to justify a given prediction. We say that a model is not
interpretable if for some instance, the justification of a prediction is arbitrarily
larger (on the number of features) than a rigorous explanation (which we define
next). Moreover, and building on earlier work, we equate explanations with the
so-called PI-explanations [3, 19, 32, 66], i.e. subset-minimal sets of feature-value
pairs that are sufficient for the prediction. More formally, given an instance
v ∈ F, with prediction c ∈ K, i.e. τ(v) = c, a PI-explanation is a minimal subset
X ⊆ F such that,

∀(x ∈ F).
∧

j∈X
(xj = vj)→(τ(x) = c) (1)

Another name for a PI-explanation is (a minimal/minimum) abductive explana-
tion (AXp) [31, 32]. For simplicity, and depending on the context, we will use
PI-explanation and the acronym AXp interchangeably.

In a similar vein, we consider contrastive explanations (CXps) [31, 54]. Con-
trastive explanation can be defined as a (subset-)minimal set of feature-value
pairs (Y ⊆ F) that suffice to changing the prediction if they are allowed to take
some arbitrary value from their domain. Formally and as suggested in [31], a
CXp is defined as a minimal subset Y ⊆ F such that,

∃(x ∈ F).
∧

j 6∈Y
(xj = vj) ∧ (τ(x) 6= c) (2)

(It is possible and simple to adapt the definition to target a specific class c′ 6= c.)
Moreover, building on the seminal work of Reiter [61], recent work demonstrated
a minimal hitting set relationship between AXps and CXps [31], namely each
AXp is a minimal hitting set (MHS) of the set of CXps and vice-versa.

For computing both kinds of explanations (AXps and CXps), we will work
with sets of features, aiming at finding minimal subsets. It will also be helpful to

6 A. Ignatiev and J. Marques-Silva

describe explanations (concretely AXps) as sets of literals. As a result, starting
from an instance v, we create a set of literals Iv = {(xj , vj)|j ∈ F}. When clear
from the context, we will just use I to denote the literals of an instance.

An AXp X ⊆ F can also be viewed as a conjunction ρ of a subset of the liter-
als Iv induced by the instance v that is sufficient for the prediction. Moreover,
given a conjunction of literals ρ, we will associate a predicate ρ : F → {0, 1}
(with the symbol duplication deliberately aiming at simplifying the notation)
to represent the values taken by the conjunction of literals for each point x in
feature space. As a result, we use ρ� τc to denote that ρ is sufficient for the
prediction, i.e.

∀(x ∈ F).ρ(x)→ τc(x) (3)

We can also associate a conjunction of literals η with each CXp, such that
the literals in η are not the literals specified by the CXp, and such that the
following condition holds,

∃(x ∈ F).η(x) ∧ ¬τc(x) (4)

It should be noted that since a CXp is a minimal set of features, each η is a
maximal set of literals such that there exists at least one point in feature space
such that the ML model predicts a class other than c.

Example 3. For the linear classifier of Example 1, let v = (2, 0), with prediction
⊕. In this case, the (only) AXp is X = {1}, indicating that, as long as x1 = 2,
the value of the prediction is ⊕, independently of the value of x2. Moreover, the
AXp can also be represented by ρ , (x1 = 2). For this very simple example,
Y = {1} is also a CXp. Indeed, if we allow feature 1 to take a value other than
2, then the assignment v′ = (0, 0) will change the prediction. (More complex
examples of CXps are studied later in the paper.) ut

Example 4. For the decision list of Example 2, let v = (0, 1), with prediction ⊕.
In this case, the (only) AXp is X = {2}, indicating that, as long as x2 = 1, the
value of the prediction is ⊕, independently of the value of x1. Moreover, the AXp
can also be represented by ρ , (x2 = 1). In this case, a CXp is also Y = {2}.
For example, the point in feature space v = (0, 0) will cause the prediction to
change to 	. ut

Example 5. To illustrate the hitting set duality relationship between AXps and
CXps established in [31], we consider a simple classifier represented as a decision
list (DL) of three rules (including the default rule). Let F = {1, 2, 3, 4, 5}, Di =
{0, 1, 2}, with i = 1, . . . , 5, and K = {	,⊕}. Let the decision list be:

R0: IF x1 = 1 ∧ x2 = 1 THEN 	
R1: ELSE IF x3 6= 1 THEN ⊕
Rdef: ELSE THEN 	

We consider the instance v = (1, 1, 1, 1, 1), which results in prediction 	. It is
straightforward to see that, as long as x1 = x2 = 1, then the prediction is 	.

SAT-Based Rigorous Explanations for Decision Lists 7

Also, it is less trivial (but still observable) that, as long as x3 = 1, the prediction
is guaranteed to be 	 as well. Moreover, it suffices to change the value of feature
3 and the value of either feature 1 or feature 2 to change the prediction to ⊕,
e.g. set x3 = x1 = 0 or set x3 = x2 = 2. As a result, we can conclude that the
set of AXps is: X = {{1, 2}, {3}}, and the set of CXps is: Y = {{1, 3}, {2, 3}}.
Furthermore, from the minimal hitting set duality relationship between AXps
and CXP’s [31], the sets in X are MHSes of the sets in Y and vice-versa. (Clearly,
we could follow the definitions and reach the same conclusions.) ut

3 Explaining Decision Lists

It is easy to see that just like DTs [37], DLs can also exhibit redundancy in the
literals used, and so the computation of PI-explanations can be instrumental to
conveying short explanations to a human decision maker.

Example 6. Consider a possible DL shown below for the function f(x1, . . . , x4) =
(x1 ∧x2)∨ (x3 ∧x4). (This DL is constructed by applying a “direct translation”
of all the paths of the DT shown in [37, Figure 1b] from left to right into rules
followed by appending a default rule predicting class f = 1.)

R0: IF x1 = 0 ∧ x3 = 0 THEN f = 0
R1: ELSE IF x1 = 0 ∧ x3 = 1 ∧ x4 = 0 THEN f = 0
R2: ELSE IF x1 = 0 ∧ x3 = 1 ∧ x4 = 1 THEN f = 1
R3: ELSE IF x1 = 1 ∧ x2 = 0 ∧ x3 = 0 THEN f = 0
R4: ELSE IF x1 = 1 ∧ x2 = 0 ∧ x3 = 1 ∧ x4 = 0 THEN f = 0
R5: ELSE IF x1 = 1 ∧ x2 = 0 ∧ x3 = 1 ∧ x4 = 1 THEN f = 1
R6: ELSE IF x1 = 1 ∧ x2 = 1 THEN f = 1
Rdef: ELSE THEN f = 1

Consider a data instance v = (1, 0, 1, 1) and observe that rule R5 fires the pre-
diction f = 1. Although rule R5 has four literals, an AXp for instance v is
(x3 = 1) ∧ (x4 = 1). Similarly, in practice one may expect examples of DLs
s.t. AXps will be significanlty smaller than the rules that fire the corresponding
predictions.

This observation is confirmed by the experimental results in Section 4, in
that explanations can play an important role in understanding the predictions
made by DLs. ut

3.1 DL Explainability

Perhaps surprisingly, whereas DTs can be explained in polynomial time, DLs
cannot. This section proves a number of theoretical results related to explain-
ability of DLs. Here we will be using the knowledge compilation (KC) map [20],
which studied a wealth of queries on knowledge representation languages. We
consider the concrete setting of classification, i.e. a language L denotes a classifier
τ and a target prediction c. Let us briefly define the queries of interest [20]:

8 A. Ignatiev and J. Marques-Silva

1. Satisfiability (SAT): if there exists a polynomial-time algorithm for decid-
ing the satisfiability of τ(x) = c, i.e. to decide in polynomial time whether
there exists x ∈ F such that τ(x) = c. In the case of DLs, this problem will
be referred to as DLSAT.

2. Implicant test (IM): if there exists a polynomial-time algorithm that de-
cides whether a conjunction of literals ρ is such that ρ� τc, i.e. ∀(x ∈
F).ρ(x)→ τc(x). In the case of DLs, this problem will be referred to as DLIM.

Similarly, we can define DNFSAT (which is trivially in P) and DNFIM (which
is well-known to be in P only if P = NP [20]).

Proposition 1. DLSAT is NP-complete.

Proof. It is easy to see that the DLSAT is in NP. We simply guess an assignment
to the features and check whether the prediction is the expected one according to
the DL. To prove NP-hardness, the reduction of CNFSAT to DLSAT is organized
as follows:
1. Consider a CNF formula φ with clauses c1, c2, . . . , cm.
2. Let the variables in φ denote the features (w.l.o.g. assume the features to be

Boolean).
3. Consider the negation of each clause ¬ci which represents a conjunction of

literals
∧

lj∈ci ¬lj .
4. For each ¬ci, create a rule πi with antecedent

∧
lj∈ci ¬lj and prediction 	.

5. Create a default rule with prediction ⊕.
6. Hence, formula φ is satisfiable if and only if there is an assignment to the

features which results in prediction ⊕.
The prediction is 	 if some clause ci is falsified, i.e. ¬ci is satisfied (and hence
rule πi fires). Otherwise, if all clauses are satisfied, and so all ¬ci are falsified,
then the prediction is ⊕. ut
Proposition 2. No polynomial-time algorithm exists for DLIM unless P = NP.

Proof. We reduce DNFIM (i.e. IM for DNF) to DLIM, given that IM for DNF is
well-known to be solvable in polynomial time only if P = NP [20]. Let ψ denote
a DNF, with k terms, i.e. ψ = t1 ∨ . . . ∨ tk, and let p denote a conjunction of
literals. IM for DNF is to decide whether p is an implicant of ψ, i.e. p�ψ. The
reduction of DNFIM to DLIM is organized as follows:
1. For each conjunction of literals ti in ψ, create a rule with antecedent given

by ti, i.e. πi = ti, and prediction 	.
2. The (k+1)th rule is created as follows: the antecendent is p and the prediction

is ⊕.
3. Finally, we add a default rule with prediction 	.

As a result, the prediction will be ⊕ if and only if p∧∧i∈[k](¬ti) is satisfied, and
so p2ψ, in which case p is not an implicant of ψ. ut

Given the above results, we can conclude the following.

Proposition 3. There is no polynomial-time algorithm for finding an AXp of
a decision list unless P = NP.

SAT-Based Rigorous Explanations for Decision Lists 9

Proof (sketch). If there was a polynomial-time algorithm for finding an AXp for
a DL then we would be able to solve IM for DL in polynomial time. This would
in turn imply that IM for DNF is solvable in polynomial time. ut

A Word on Decision Sets. Although decision sets are unordered (in contrast
to DLs), this fact does not simplify the computation of PI-explanations. (In
what follows, we assume that a DS implements a total classification function,
which is not the case in general due to the issue of overlap [35] — otherwise,
PI-explanations would be ill-defined.)

Proposition 4. Finding an AXp for a DS is hard for DP.

Proof (sketch). It is known [35] that decision sets can be associated with DNF
formulas. It is also known [70] that finding a prime implicant (PI) of a DNF D
given a satisfying assignment v is complete for DP. Given the aforementioned
connection between DSs and DNFs, we show here that the above problem can
be reduced to finding a PI-explanation of a DS.

Let the terms in the DNF D become the rules for prediction ⊕ in the cor-
responding DS. Also, let the default rule of the DS predict 	. Hence, a set of
literals ρ (contained in the literals induced by v) is a PI of the DNF D iff ρ is a
PI-explanation for the DS prediction ⊕ given v. ut

Remark 1. In the case of decision sets, it is also simple to observe that deciding
whether a set of literals ρ is an AXp is in DP. For that, one needs to prove first
that the set of literals ρ entails prediction ⊕; this problem is clearly in coNP.
Additionally, one also needs to prove subset-minimality of ρ, i.e. that removing
any single literal from ρ results in a subset of literals that does not entail the
prediction ⊕. (We can consider |ρ| sets of literals, each of which removes a literal
from ρ to get a set of literals ρk, and check that there are |ρ| assignments such for
each ρk we get a different prediction 	.) The latter problem is in NP. Therefore
and given Proposition 4, we can establish DP-completeness of the decision version
of finding a PI-explanation in the case of DSs.

DLs vs. DTs and vs. DSs. The results of this section are somewhat surprising
in terms of comparing DTs with DLs and DSs. On the one hand, satisfiability
query is trivially in P for DTs and DSs, but it is NP-complete for DLs. On
the other hand, AXps can be computed in polynomial time for DTs [37], but a
polynomial-time algorithm for computing AXps for DLs and DSs would imply
P = NP.

3.2 Explaining Arbitrary DLs with SAT

When explaining decision lists, one can use the work on computing rigorous
abductive [32,66] and contrastive explanations [31] for ML models. This section
describes a novel propositional encoding for DL classifiers that can be exploited
by the generic approach of [31,32].

10 A. Ignatiev and J. Marques-Silva

Let v denote a point in feature space with prediction c ∈ K. Moreover, let
the rule that fires on v be i ∈ R. Note that for an arbitrary rule k ∈ R to fire,
the following constraint must hold true:∧

rj∈R
o(j)<o(k)

¬(l(j)) ∧ l(k) (5)

Constraint (5) encodes the fact that the literals in all the rules preceding rule
k must not fire and the rule k must fire. (Recall that l(i) represents the set of
literals of rule i). This constraint is straightforward to clausify, i.e. convert to
CNF. Moreover, let ϕ(i) denote the set of clauses resulting from clausification
of the constraint (5) for rule i to fire.

Given a set of literals ρ, ρ is an implicant of the decision function associated
with the DL (i.e. ρ is an AXp) for the instance v and the corresponding prediction
c(i) if:

ρ�
∨
j∈R

c(j)=c(i)

ϕ(j) (6)

i.e. for any point x in feature space, if ρ(x) holds true, then one of the rules
predicting the same class c(i) as rule i must hold true as well. Constraints (5)
and (6) comprise the propositional encoding that can be used in the framework
of [32] to compute one AXp for the prediction made by a decision list for a
given input instance. Note that computing such an AXp ρ is typically done by
reducing the initial set of literals Iv, which clearly entails the right-hand side
of (6), i.e. Iv �

∨
j∈R,c(j)=c(i) ϕ(j). Also note that in practice it is convenient

to negate this tautology and instead deal with its negation, which is obviously
unsatisfiable. Following [31,32], this enables one to apply the well-developed ap-
paratus for computing one AXp (resp. CXp) as an MUS (resp. MCS) of the
negated formula [6, 7, 26, 36, 38, 42, 45, 48, 50, 52, 53], but also for enumerating a
given number of all AXps (resp. CXps) through MUS (resp. MCS) enumera-
tion [41,43,44,55,60].

Example 7. As mentioned above, when computing an AXp in the form of (6), it
is convenient to negate the tautology Iv �

∨
j∈R,c(j)=c(i) ϕ(j) and instead work

with unsatisfiable formula
Iv ∧

∧
j∈R

c(j)=c(i)

¬ϕ(j)

Here, the left part Iv of the conjunction serves as the set S of unit-size soft
clauses, each represented by a literal assigning a value to a feature. This way
AXps and CXps can be found as minimal subsets of S (i.e. MUSes or MCSes,
respectively), subject to the hard clauses H , ∧

j∈R,c(j)=c(i) ¬ϕ(j). Also observe

that the negation ¬ϕ(k) (recall that ϕ(k) enforces rule k to fire) constitutes the
disjunction

¬l(k) ∨
∨

rj∈R
o(j)<o(k)

l(j)

SAT-Based Rigorous Explanations for Decision Lists 11

which enforces that either rule k does not fire or one of the preceding rules fires.
Also, to enforce that the default rule does not fire, we can simply require one
of the non-default rules of the DL to fire. Finally, note that the hard clauses H
encode the fact of misclassification, which is clearly impossible when the input
instance Iv is given as the soft clauses S, thus making formulaH∧S unsatisfiable.

Now, consider the DL from Example 6 and recall that rule R5 fires prediction
f = 1 for the instance v = (1, 0, 1, 1). As prediction f = 1 is represented by rules
R2, R5, R6, Rdef, our hard clauses H must enforce that none of them fires. Given
the above, the hard clauses H are formed by

H =

 ¬ϕ(2) ,
[
¬l(2) ∨∨1

j=0 l(j)
]

;

¬ϕ(6) ,
[
¬l(6) ∨∨5

j=0 l(j)
]

;

¬ϕ(5) ,
[
¬l(5) ∨∨4

j=0 l(j)
]

;

¬ϕdef ,
[∨6

j=0 l(j)
]


Here, CNF encoding of terms l(j) is omitted as it is trivial to obtain. ut

As can be observed in Example 7, the propositional encoding described in this
section targets simplicity and for this reason it exhibits redundancy, e.g. expres-
sions

∨k−1
j=0 l(j) in the representation of ¬ϕ(k) are repeated for every k′ > k. As

shown in Section 4, the performance results suggest that the proposed encoding
scales well on DLs of realistic size. Nevertheless, a number of improvements can
be envisioned, which add more structure to the encoding, but with the cost of us-
ing additional auxiliary variables. Our initial experiments suggest no significant
gains were obtained with a more complex propositional encoding.

4 Experimental Results

This section aims at assessing the proposed SAT-based approach to computing
and enumerating rigorous abductive explanations (AXps) [32,66] as well as con-
trastive explanations (CXps) [31] for decision list models. First, the approach
will be tested from the perspective of raw performance, followed by additional
information on the comparative number of AXps and CXps as well as their
length.

Experimental Setup. The experiments were performed on a MacBook Pro
laptop running macOS Big Sur 11.2.3. Therefore, each individual process was
run on a Quad-Core Intel Core i5-8259U 2.30 GHz processor with 16 GByte of
memory. The memory limit was set to 4 GByte while the time limit used was
set to 1800 seconds, for each individual process to run.

Prototype Implementation. A prototype implementation 4 of the proposed
approach was developed as a Python script instrumenting incremental calls to
the Glucose 3 SAT solver [4] using the PySAT toolkit [28]. The implementation
targets the computation of one explanation (either an AXp or a CXp) and
enumeration of a given number of those, with a possibility to enumerate all.

4 The prototype is available at https://github.com/alexeyignatiev/xdl-tool.

https://github.com/alexeyignatiev/xdl-tool

12 A. Ignatiev and J. Marques-Silva

It is known [31] that a CXp can be computed as an MCS for the encod-
ing formula discussed above and hence CXp enumeration is implemented in the
prototype as LBX-based MCS enumeration [53]. Similarly, AXp corresponds to
an MUS of the formula and, as a result, AXp enumeration is done using the
MARCO-like MUS enumeration approach [41,43,60] due to the hitting set dual-
ity between AXps and CXps [31]. Concretely, the MARCO-like explainer is orga-
nized as two interconnecting oracles: (i) a SAT oracle checking (un)satisfiability
of a selected set of clauses of the formula, and (ii) a minimal hitting set (MHS)
oracle, which computes minimal hitting sets of a current collection of MCSes
of the formula obtained so far. The MHS oracle was implemented on top of the
RC2 MaxSAT solver exploited incrementally [29]. Each iteration of the MARCO-
like explainer computes either an AXp or a CXp. The former are reported and
blocked (by adding a single clause to the MHS oracle) while the latter are used
later as the sets to hit. The explainer stops as soon as there are no more minimal
hitting set identified by the MHS oracle. As a result, the MARCO-like explainer
produces both AXps and CXps upon the end of execution. Note that thanks to
the use of MaxSAT-based MHS oracle, AXps computed this way are irredun-
dant, i.e. subset-minimal, and do not have to be reduced further while CXps do
need to be reduced by a dedicated reduction procedure (see below). Also note
that the MARCO-like approach can also be used in a dual way, i.e. targeting
CXp enumeration and computing AXps as a by-product. This mode of operation
of the explainer has also been implemented in the developed prototype.

It is also important to mention that all the three modes of operation make
incremental use of the underlying SAT oracles. As such, the LBX-like CXp enu-
meration computes an explanation, blocks it by adding a single clause and pro-
ceeds to the next CXp. Furthermore, once all explanations for a given data
instance are enumerated, all the previously added blocking clauses are disabled
and the enumeration process starts again for a new data instance. This is done
with the use of unique selector variables introduced for each data instance. On
the contrary, the MARCO-like approaches accumulate and block all explana-
tions on the MHS oracle side. This enables one to keep the same SAT oracle on
the checking side of the approach while restarting the MHS oracle from scratch,
i.e. with an empty collection of sets to hit, for each new data instance.

Finally, the following heuristics are used. LBX-like computation of a single
CXp makes use of the Clause D (CLD) heuristic [50]. Computation of a single
AXp is done as a simple deletion-based linear search procedure [51], strength-
ened by exhaustive enumeration of unit-size MCSes used to bootstrap the MHS
oracle. Although a more sophisticated algorithm QuickXPlain [38] has been also
implemented, it turned out to be outperformed by the aforementioned simpler
alternative in this concrete setting.

Benchmarks and Methodology. Experimental evaluation was performed on
a subset of datasets selected from a few publicly available sources. In particular,
these include datasets from UCI Machine Learning Repository [69] and Penn
Machine Learning Benchmarks [58] as well as datasets previously studied in the
context of ML explainability [63] and fairness [23, 24]. The number of selected

SAT-Based Rigorous Explanations for Decision Lists 13

datasets is 72. We applied the approach of 5-fold cross validation, i.e. each dataset
was randomly split into 5 chunks of instances; each of these chunks served as
test data while the remaining 4 chunks were used to train the classifiers. As a
result, each dataset (out of 72) resulted in 5 individual pairs of training and test
datasets represented by 80% and 20% of data instances. Therefore, the total
number of training datasets considered in the evaluation is 360.

Given a training dataset, i.e. represented by 4 chunks of the original data,
a decision list model was trained with the use of the well-known heuristic al-
gorithm CN2 [14, 15]5, the implementation of which was taken from the well-
known Python toolkit Orange6. The time spent on training the models was
ignored. Next, the prototype explainer was run in one of the three modes de-
scribed above, to enumerate all explanations (either AXps, or CXps) for each
of the instances of the original 100% data. Also and as mentioned above, the
explainer was given 1800 seconds for each of the 360 datasets/models.

Note that the number of rules in the decision list models constructed by CN2
for the target datasets varied from 6 to 2055. Also, the total number of non-class,
i.e. solely antecedent, literals used in the models varied from 6 to 6754. Finally,
propositional formulas encoding the explanation problems for these models had
from 7 to 15340 variables and from 9 to 3932987 clauses. It is important to
mention that all data was treated as categorical and hence the propositional
formulas given to the encoder incorporated cardinality constraints enforcing that
a feature can take exactly one value; in the experiments, these constraints were
encoded into CNF using the pairwise encoding [59]. Although left untested, other
cardinality encodings would result in smaller formulas — the pairwise encoding
was selected intentionally in order to produce larger formulas and so to test
scalability of the proposed SAT-based approach.

Raw Performance. Figure 2a depicts a cactus plot showing the raw perfor-
mance of the explainer working in the three selected modes of operation. (Note
that the CPU time axis is scaled logarithmically.) As can be observed, all the al-
gorithms are able to finish successful computation of all the target explanations
for all the data instances of each of the 360 benchmark datasets within the given
time limit. Surprisingly, the best performing configuration overall turns out to
be MARCO-based AXp enumeration. MARCO-based CXp enumeration is a bit
slower. Recall that both MARCO-based modes end up enumerating the same
sets of explanations including AXps (CXps, resp.) and dual CXps (dual AXps,
resp.). Also, recall that the only major difference between the two configurations
is the type of the target explanations that are provided by the MHS oracle while
the dual explanations have to be reduced by a dedicated reduction procedure.
Therefore, the performance difference shown suggests that in practice it may be

5 Recent alternative approaches to sparse decision lists [1, 2, 65] have also been con-
sidered but were eventually discarded for two reasons: (1) they can only deal with
binary data and (2) they produce sparse decision lists containing a couple of rules
and a few literals in total — i.e. these methods do not provide models that would
be of interest for our work.

6 https://orangedatamining.com/

https://orangedatamining.com/

14 A. Ignatiev and J. Marques-Silva

0 100 200 300 400
datasets

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

MARCO-like AXp Enumeration
MARCO-like CXp Enumeration
LBX-like CXp Enumeration

(a) Raw performance comparison

101 102 103 104 105 106

Total number of AXps per dataset

101

102

103

104

105

106

To
ta

ln
um

be
ro

fC
X

ps
pe

rd
at

as
et

(b) Total number AXps and CXps of per dataset

Fig. 2: Performance of the three operation modes and the total number of explanations
per dataset they enumerate.

100 101 102

Average number of AXps per instance

100

101

102

A
ve

ra
ge

nu
m

be
ro

fC
X

ps
pe

ri
ns

ta
nc

e

(a) Average number of explanations per instance

100 101 102

Average AXp length per instance

100

101

102

A
ve

ra
ge

C
X

p
le

ng
th

pe
ri

ns
ta

nc
e

(b) Average explanation size per instance

Fig. 3: Average number of AXps and CXps per data instance and their average size.

more beneficial to target AXps and so to reduce dual CXps than doing the op-
posite (which is not really surprising given that the former correspond to MUS
extraction while the latter correspond to MCS extraction). Finally, it should be
mentioned that although LBX-like CXp explanation works the most efficiently
for most of the benchmarks, in some cases it is outperformed by the competitors,
which may be explained by the need to incrementally block a significant number
of previously computed solutions (recall that, on the contrary, the MARCO-like
configurations restart the MHS oracle from scratch for every new data instance).

SAT-Based Rigorous Explanations for Decision Lists 15

AXps vs CXps. As can be seen in Figure 2b, the total number of AXps per
dataset tends to be lower than the total number of CXps. Concretely, the num-
ber of AXps per dataset varies from 16 to 72838 while the number of CXps
per dataset varies from 23 to 248825. (Observe that the time to compute one
explanation is negligible.) These data are in line with the results previously ob-
tained in [31] when explaining a different kind of ML model (namely, XGBoost
models [13]) with a different reasoning engine (namely, Z3 SMT solver [56]). Un-
surprisingly, the average number of CXps per data instance is also higher than
the average number of AXps, as shown in Figure 3a. In general, the average
number of CXps per instance varies from 1 to 20.8 while the average number
of AXps goes from 1 to 22.7. However and as one can observe in the scatter
plot Figure 3a, for the lion’s share of data instances there is a single AXp while
there are many more CXps. Note that the picture is the opposite for the av-
erage explanation length (measured as the number of literals remaining in the
explanation). In particular, CXps are shorter than AXps and the average length
of a CXp per data instance does not exceed 2.8 while the average length of
AXp varies from 1 to 15.8 (which in fact may provide another insight into the
underperforming MARCO-like CXp enumeration). Observe that these data also
confirms the results previously reported in [31].

Final Remarks. A few conclusions can be made with respect to the experi-
mental results shown above. First, all the explainer configurations scale well and
are able to enumerate all explanations for all data instances incrementally, even
for DL models with thousands of rules and literals encoded into CNF formulas
with millions of clauses. Second, MARCO-like AXp enumeration outperforms
both LBX-like and MARCO-like CXp enumeration. Third, the number of CXps
per dataset and per instance tends to be higher than the number of AXps. And
finally, AXps are on average much larger than CXps.

5 Conclusions

This paper investigates the computation of rigorous (or PI-) explanations for
DLs. The paper first argues that, similar to DTs [37], DLs may also not be
interpretable. (This observation is also validated by the experimental results.)
Furthermore, the paper proves that in contrast to the case of DTs, finding one
PI-explanation for DLs (and also for DSs) cannot be in P unless P = NP. As a
result, one possible solution for finding AXps and CXps is to encode the problem
to propositional logic, and find one or enumerate more than one explanation(s)
using SAT oracles. The experimental results demonstrate that SAT-based ap-
proaches are effective at finding explanations (both AXps and CXps) of DLs.
The experimental results also confirm that a MARCO-like algorithm is effective
at enumerating explanations of DLs.

The results in this paper suggest a number of future research topics. The
application of SAT to explaining DLs motivates the investigation of which other
ML models can be explained with SAT solvers, and for which explanations can
be computed efficiently.

16 A. Ignatiev and J. Marques-Silva

References

1. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M.I., Rudin, C.: Learning certi-
fiably optimal rule lists. In: KDD. pp. 35–44 (2017)

2. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M.I., Rudin, C.: Learning certifi-
ably optimal rule lists for categorical data. J. Mach. Learn. Res. 18, 234:1–234:78
(2017), http://jmlr.org/papers/v18/17-716.html

3. Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based on com-
piled representations. In: KR. pp. 838–849 (2020)

4. Audemard, G., Lagniez, J., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: Application to MUS extraction. In: SAT. pp. 309–317
(2013)

5. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: PADL. pp. 174–186 (2005)

6. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

7. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model
rotation. In: FMCAD. pp. 37–40 (2011)

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Frontiers in Artificial
Intelligence and Applications, vol. 336. IOS Press (2021)

9. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

10. Bouckaert, R.R., Frank, E., Hall, M.A., Holmes, G., Pfahringer, B., Reutemann, P.,
Witten, I.H.: WEKA - experiences with a java open-source project. J. Mach. Learn.
Res. 11, 2533–2541 (2010), http://portal.acm.org/citation.cfm?id=1953016

11. Camburu, O., Giunchiglia, E., Foerster, J., Lukasiewicz, T., Blunsom, P.:
Can I trust the explainer? verifying post-hoc explanatory methods. CoRR
abs/1910.02065 (2019), http://arxiv.org/abs/1910.02065

12. Chen, C., Rudin, C.: An optimization approach to learning falling rule lists. In:
AISTATS. pp. 604–612 (2018)

13. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: KDD. pp.
785–794 (2016)

14. Clark, P., Boswell, R.: Rule induction with CN2: some recent improvements. In:
EWSL. pp. 151–163 (1991)

15. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261–283
(1989)

16. Cohen, W.W.: Efficient pruning methods for separate-and-conquer rule learning
systems. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference
on Artificial Intelligence. Chambéry, France, August 28 - September 3, 1993. pp.
988–994. Morgan Kaufmann (1993)

17. Cohen, W.W.: Fast effective rule induction. In: ICML. pp. 115–123 (1995)

18. Cohen, W.W., Singer, Y.: A simple, fast, and effictive rule learner. In: AAAI. pp.
335–342 (1999)

19. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: ECAI. pp. 712–720
(2020). https://doi.org/10.3233/FAIA200158

20. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

21. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: CP. pp. 225–239 (2011)

http://jmlr.org/papers/v18/17-716.html
http://portal.acm.org/citation.cfm?id=1953016
http://arxiv.org/abs/1910.02065
https://doi.org/10.3233/FAIA200158

SAT-Based Rigorous Explanations for Decision Lists 17

22. Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina,
M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L.,
Zbontar, J., Zitnik, M., Zupan, B.: Orange: data mining toolbox in python. J.
Mach. Learn. Res. 14(1), 2349–2353 (2013), http://dl.acm.org/citation.cfm?
id=2567736, https://orangedatamining.com/

23. Auditing black-box predictive models. https://blog.fastforwardlabs.com/

2017/03/09/fairml-auditing-black-box-predictive-models.html (2016)
24. Friedler, S., Scheidegger, C., Venkatasubramanian, S.: On algorithmic fairness,

discrimination and disparate impact (2015)
25. Ignatiev, A.: Towards trustable explainable AI. In: IJCAI. pp. 5154–5158 (2020)
26. Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability.

Constraints An Int. J. 21(2), 277–302 (2016)
27. Ignatiev, A., Morgado, A., Marques-Silva, J.: Propositional abduction with implicit

hitting sets. In: ECAI. pp. 1327–1335 (2016)
28. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for proto-

typing with SAT oracles. In: SAT. pp. 428–437 (2018)
29. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.

Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)
30. Ignatiev, A., Morgado, A., Weissenbacher, G., Marques-Silva, J.: Model-based di-

agnosis with multiple observations. In: IJCAI. pp. 1108–1115 (2019)
31. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to ab-

ductive explanations and back again. In: AI*IA (2020), preliminary version avail-
able from https://arxiv.org/abs/2012.11067

32. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for
machine learning models. In: AAAI. pp. 1511–1519 (2019)

33. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On relating explanations and ad-
versarial examples. In: NeurIPS. pp. 15857–15867 (2019)

34. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On validating, repairing and re-
fining heuristic ML explanations. CoRR abs/1907.02509 (2019), http://arxiv.
org/abs/1907.02509

35. Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J.: A sat-based approach
to learn explainable decision sets. In: IJCAR. pp. 627–645 (2018)

36. Ignatiev, A., Previti, A., Liffiton, M.H., Marques-Silva, J.: Smallest MUS extraction
with minimal hitting set dualization. In: CP. pp. 173–182 (2015)

37. Izza, Y., Ignatiev, A., Marques-Silva, J.: On explaining decision trees. CoRR
abs/2010.11034 (2020)

38. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: AAAI. pp. 167–172 (2004)

39. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: A joint frame-
work for description and prediction. In: KDD. pp. 1675–1684 (2016)

40. Lakkaraju, H., Bastani, O.: ”how do I fool you?”: Manipulating user trust via
misleading black box explanations. In: AIES. pp. 79–85 (2020)

41. Liffiton, M.H., Malik, A.: Enumerating infeasibility: Finding multiple MUSes
quickly. In: CPAIOR. pp. 160–175 (2013)

42. Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J.,
Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal
unsatisfiable subformulas. Constraints An Int. J. 14(4), 415–442 (2009)

43. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints An Int. J. 21(2), 223–250 (2016)

44. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas.
In: SAT. pp. 173–186 (2005)

http://dl.acm.org/citation.cfm?id=2567736
http://dl.acm.org/citation.cfm?id=2567736
https://orangedatamining.com/
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://arxiv.org/abs/2012.11067
http://arxiv.org/abs/1907.02509
http://arxiv.org/abs/1907.02509

18 A. Ignatiev and J. Marques-Silva

45. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

46. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43
(2018)

47. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
NeurIPS. pp. 4765–4774 (2017)

48. Lynce, I., Marques-Silva, J.: On computing minimum unsatisfiable cores. In: SAT
(2004)

49. Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.:
Explaining naive bayes and other linear classifiers with polynomial time and delay.
In: NeurIPS (2020)

50. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI. pp. 615–622 (2013)

51. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: SAT.
pp. 159–173 (2011)

52. Mencia, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: SAT. pp. 342–360 (2016)

53. Mencia, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJ-
CAI. pp. 1973–1979 (2015)

54. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

55. Morgado, A., Liffiton, M.H., Marques-Silva, J.: MaxSAT-based MCS enumeration.
In: HVC. pp. 86–101 (2012)

56. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. pp. 337–340
(2008)

57. Narodytska, N., Shrotri, A.A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assess-
ing heuristic machine learning explanations with model counting. In: SAT. pp.
267–278 (2019)

58. Penn Machine Learning Benchmarks. https://github.com/EpistasisLab/

penn-ml-benchmarks

59. Prestwich, S.D.: CNF encodings. In: Handbook of Satisfiability: Second Edition,
Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 75–100. IOS Press
(2021)

60. Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: AAAI (2013)
61. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95

(1987)
62. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should I trust you?”: Explaining the

predictions of any classifier. In: KDD. pp. 1135–1144 (2016)
63. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic

explanations. In: AAAI. pp. 1527–1535 (2018)
64. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987).

https://doi.org/10.1007/BF00058680, https://doi.org/10.1007/BF00058680
65. Rudin, C., Ertekin, S.: Learning customized and optimized lists of rules

with mathematical programming. Math. Program. Comput. 10(4), 659–702
(2018). https://doi.org/10.1007/s12532-018-0143-8, https://doi.org/10.1007/

s12532-018-0143-8

66. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian
network classifiers. In: IJCAI. pp. 5103–5111 (2018)

67. Shih, A., Choi, A., Darwiche, A.: Compiling bayesian network classifiers into deci-
sion graphs. In: AAAI. pp. 7966–7974 (2019)

https://github.com/EpistasisLab/penn-ml-benchmarks
https://github.com/EpistasisLab/penn-ml-benchmarks
https://doi.org/10.1007/BF00058680
https://doi.org/10.1007/BF00058680
https://doi.org/10.1007/s12532-018-0143-8
https://doi.org/10.1007/s12532-018-0143-8
https://doi.org/10.1007/s12532-018-0143-8

SAT-Based Rigorous Explanations for Decision Lists 19

68. Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling LIME and SHAP:
adversarial attacks on post hoc explanation methods. In: AIES. pp. 180–186 (2020)

69. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml
70. Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-level logic

minimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(7), 1230–
1246 (2006)

71. Wang, F., Rudin, C.: Falling rule lists. In: AISTATS (2015)
72. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-

edge base reasoning. In: NeurIPS. pp. 2319–2328 (2017)
73. Yang, H., Rudin, C., Seltzer, M.I.: Scalable bayesian rule lists. In: ICML. pp. 3921–

3930 (2017)

https://archive.ics.uci.edu/ml

	SAT-Based Rigorous Explanations for Decision Lists

