Skip to main content

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2021 (SAT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12831))

Abstract

Modern satisfiability solvers are interwoven with important simplification techniques as preprocessors and inprocessors. Implementations of these techniques are hampered by expensive memory accesses which result in a large number of cache misses. This paper explores the application of hash functions in encoding clause structures and bitwise operations for detecting relations between clauses. The evaluation showed a significant increase in performance for subsumption and Blocked Clause Elimination on the Main track benchmark of the 2020 SAT competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When there is a need to distinguish between a variable name and the numeral, e.g., the variable ‘17’ and the number 17, we will explicitly write \((17)_{int}\) for the latter.

  2. 2.

    The binary representation of an integer is indexed right to left, i.e., 01011 = 11.

  3. 3.

    In mixed symbol expressions, bit-wise operators take precedence, i.e., \( p \& q = 0 \vee r \oplus s \ne 0\) evaluates as \( ((p \& q) = 0) \vee ((r \oplus s) \ne 0)\).

  4. 4.

    Code available at www.github.com/incudine/sat2021.

References

  1. Bakhtiari, S., Safavi-Naini, R., Pieprzyk, J., et al.: Cryptographic hash functions: A survey. Technical Report, Citeseer (1995)

    Google Scholar 

  2. Balyo, T., Froleyks, N., Heule, M.J., Iser, M., Järvisalo, M., Suda, M.: Proceedings of sat competition 2020: Solver and benchmark descriptions (2020)

    Google Scholar 

  3. Bayardo, R.J., Panda, B.: Fast algorithms for finding extremal sets. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 25–34. SIAM (2011)

    Google Scholar 

  4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5

    Chapter  MATH  Google Scholar 

  5. Han, H., Somenzi, F.: On-the-fly clause improvement. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 209–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_21

    Chapter  Google Scholar 

  6. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_10

    Chapter  MATH  Google Scholar 

  7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28

    Chapter  Google Scholar 

  8. Jovanović, D., Janičić, P.: Logical analysis of hash functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 200–215. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_11

    Chapter  MATH  Google Scholar 

  9. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT preprocessor. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_28

    Chapter  Google Scholar 

  10. Legendre, F., Dequen, G., Krajecki, M.: Encoding hash functions as a sat problem. In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, vol. 1, pp. 916–921. IEEE (2012)

    Google Scholar 

  11. de Mare, M., Wright, R.N.: Secure set membership using 3Sat. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 452–468. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_32

    Chapter  Google Scholar 

  12. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_13

    Chapter  Google Scholar 

  13. Nejati, S., Liang, J.H., Gebotys, C., Czarnecki, K., Ganesh, V.: Adaptive restart and CEGAR-based solver for inverting cryptographic hash functions. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 120–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2_8

    Chapter  Google Scholar 

  14. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: A survey. arXiv preprint arXiv:1408.2927 (2014)

  15. Wang, J., Zhang, T., Sebe, N., Shen, H.T., et al.: A survey on learning to hash. IEEE Trans. Pattern Anal. Mach. intell. 40(4), 769–790 (2017)

    Article  Google Scholar 

  16. Weaver, S., Heule, M.: Constructing minimal perfect hash functions using sat technology. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1668–1675 (2020)

    Google Scholar 

  17. Weaver, S.A., Ray, K.J., Marek, V.W., Mayer, A.J., Walker, A.K.: Satisfiability-based set membership filters. J. Satisfiability Boolean Model. Comput. 8(3–4), 129–148 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Wotzlaw, A., van der Grinten, A., Speckenmeyer, E.: Effectiveness of pre-and inprocessing for cdcl-based sat solving. arXiv preprint arXiv:1310.4756 (2013)

  19. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, H. (2021). Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers. In: Li, CM., Manyà, F. (eds) Theory and Applications of Satisfiability Testing – SAT 2021. SAT 2021. Lecture Notes in Computer Science(), vol 12831. Springer, Cham. https://doi.org/10.1007/978-3-030-80223-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80223-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80222-6

  • Online ISBN: 978-3-030-80223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics