Abstract
In this paper we show that extended Q-resolution is optimal among all QBF proof systems that allow strategy extraction modulo an NP oracle. In other words, for any QBF refutation system f where circuits witnessing the Herbrand functions can be extracted in polynomial time from f-refutations, f can be simulated by extended Q-resolution augmented with an NP oracle as described by Beyersdorff et al. We argue that using NP oracles and strategy extraction gives a natural framework to study QBF systems as they have relations to SAT calls and game instances, respectively, in QBF solving.
A weaker version of QBF extension variables also put forward by Jussila et al. does not have this optimality result, and we show that under an NP oracle there is no improvement of weak extended Q-Resolution compared to ordinary Q-Resolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press, Cambridge (2009)
Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)
Bellatoni, S., Pitassi, T., Urquhart, A.: Approximation of small-depth Frege proofs. SIAM J. Comput. 21, 1161–1179 (1992)
Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic technique for hard random QBFs. CoRR abs/1712.03626 (2017). http://arxiv.org/abs/1712.03626
Beyersdorff, O., Bonacina, I., Chew, L., Pich, J.: Frege systems for quantified boolean logic. J. ACM 67(2), (2020). https://doi.org/10.1145/3381881
Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their proof complexity. ACM Trans. Comput. Theory 11(4), 26:1–26:42 (2019). https://doi.org/10.1145/3352155
Beyersdorff, O., Chew, L., Janota, M.: Extension variables in QBF resolution. In: Beyond, N.P.: Papers from the 2016 AAAI Workshop (2016). http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12612
Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF proof systems. Electron. Colloquium Comput. Complexity (ECCC) 24, 44 (2017). https://eccc.weizmann.ac.il/report/2017/044
Blinkhorn, J.L.: Quantified Boolean Formulas: Proof Complexity and Models of Solving. Ph.D. thesis, University of Leeds (2019)
Chen, H.: Proof complexity modulo the polynomial hierarchy: Understanding alternation as a source of hardness. In: ICALP, pp. 94:1–94:14 (2016)
Chew, L., Clymo, J.: How QBF expansion makes strategy extraction hard. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 66–82. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_5
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symbolic Logic 44(1), 36–50 (1979)
Feldman, A., Kleer, J., Matei, I.: Design space exploration as quantified satisfaction (05 2019)
Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17(1), 13–27 (1984)
Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Walsh, T. (ed.) International Joint Conference on Artificial Intelligence IJCAI, pp. 546–553. IJCAI/AAAI (2011)
Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
Håstad, J.: One-way permutations in NC\(^0\). Inf. Process. Lett. 26(3), 153–155 (1987)
Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: 7th International Joint Conference on Automated Reasoning (IJCAR), pp. 91–106 (2014)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_10
Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)
Jeřábek, E.: Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann. Pure Appl. Logic 129, 1–37 (2004)
Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72788-0_21
Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 281–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_18
Kiesl, B., Seidl, M.: QRAT polynomially simulates \(\forall \text{-Exp+Res }\). In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 193–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_13
Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press (2009)
Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)
Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice. Ph.D. thesis, Informatik, Johannes Kepler University Linz (2012)
Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3), 71–76 (2010)
Messner, J., Torán, J.: Optimal proof systems for propositional logic and complete sets. Technical Report, TR97-026, Electronic Colloquium on Computational Complexity, a revised version appears at STACS’98 (1997)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
Slivovsky, F.: Structure in# SAT and QBF. Ph.D. thesis (2015)
Tseitin, G.S.: On the complexity of proof in prepositional calculus. Zapiski Nauchnykh Seminarov POMI 8, 234–259 (1968)
Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_47
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chew, L. (2021). Hardness and Optimality in QBF Proof Systems Modulo NP. In: Li, CM., Manyà, F. (eds) Theory and Applications of Satisfiability Testing – SAT 2021. SAT 2021. Lecture Notes in Computer Science(), vol 12831. Springer, Cham. https://doi.org/10.1007/978-3-030-80223-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-80223-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80222-6
Online ISBN: 978-3-030-80223-3
eBook Packages: Computer ScienceComputer Science (R0)