Skip to main content

3D Point Cloud Upsampling and Colorization Using GAN

  • Conference paper
  • First Online:
  • 585 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12832))

Abstract

Progress in LiDAR sensors have opened up the potential for novel applications using point clouds. However, LiDAR sensors are inherently sensitive, and also lack the ability to colorize point clouds, thus impeding further development of the applications mentioned above. Our paper presents a new end-to-end network that upsamples and colorizes a given input point cloud. Thus the network is able to manage the sparseness and noisiness resulting from the sensitivity of the sensor, and also enrich point cloud data by giving them the original color in the real world. To the best of our knowledge, this is the first work that uses a voxelized generative model to colorize point clouds, and also the first to perform both upsampling and colorization tasks in a single network. Experimental results show that our model is able to correctly colorize and upsample a given input point cloud. From this, we conclude that our model understands the shape and color of various objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J.: Representation learning and adversarial generation of 3D pointclouds. CoRR, abs/1707.02392 (2017)

    Google Scholar 

  2. Cao, X., Nagao, K.: Point cloud colorization based on densely annotated 3D shape dataset. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 436–446. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_36

    Chapter  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Goodfellow, I.: Generativeadversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  5. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR, abs/1410.5401 (2014)

    Google Scholar 

  6. Gurumurthy, S., Agrawal, S.: High fidelity semantic shape completion for point clouds using latent optimization. CoRR, abs/1807.03407 (2018)

    Google Scholar 

  7. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  8. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2015)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821 (2017)

    Google Scholar 

  12. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597 (2015)

    Google Scholar 

  14. Yu, L., Li, X., Fu, C.-W., Cohen-Or, D., Heng, P.-A.: PU-Net: point cloud upsampling network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2799 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beomyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, B., Han, S., Yi, E., Kim, J. (2021). 3D Point Cloud Upsampling and Colorization Using GAN. In: Chomphuwiset, P., Kim, J., Pawara, P. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2021. Lecture Notes in Computer Science(), vol 12832. Springer, Cham. https://doi.org/10.1007/978-3-030-80253-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80253-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80252-3

  • Online ISBN: 978-3-030-80253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics