Skip to main content

Investigating the Modulation of Spatio-Temporal and Oscillatory Power Dynamics by Perceptible and Non-perceptible Rhythmic Light Stimulation

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2021)

Abstract

Several studies emphasize the great potential of rhythmic light stimulation to evoke steady-state visual evoked potentials (SSVEPs) measured via electroencephalographic (EEG) recordings as a safe method to modulate brain activity. In the current study, we investigated visual event-related potentials (ERPs) and oscillatory power evoked by perceptible (above a previously estimated individual threshold) and non-perceptible (below the individual threshold) frequency-modulated rhythmic light stimulation at 10 Hz via a light-emitting diode. Furthermore, we examined the effect of overt and covert attention by asking participants to (1) directly focus on the light source (overt attention condition) and (2) indirectly attend it (covert attention condition). Our results revealed entrainment effects reflected in both ERPs and oscillatory power in the EEG even for a stimulation intensity below the individual perceptibility threshold and without directly fixating the light source. This non-invasive stimulation method shows strong potential for naturalistic non-clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It was measured via the Freiburg Visual Acuity Test [10].

  2. 2.

    Since we used a LED with a linear current-to-luminosity curve for the current range used in the experiment, we prevented additional harmonics in the signal due to the fact that the sinusoidal current variations translate into a non-sinusoidal (distorted) light intensity variation.

  3. 3.

    Positions: Fp1, Fp2, AFz, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, C3, Cz, C4, T7, T8, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, O1, Oz, O2

  4. 4.

    Flickering stimuli: 0.5 mA, 1 mA, 2 mA, 3 mA, 4 mA, 5 mA, 6 mA, 7 mA, 8 mA, 9 mA

  5. 5.

    Static control stimuli: 1 mA, 3 mA, 5 mA, 7 mA

References

  1. Herrmann, C.S.: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137(3–4), 346–353 (2001)

    Article  Google Scholar 

  2. Vialatte, F.-B., Maurice, M., Dauwels, J., et al.: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog. Neurobiol. 90(4), 418–438 (2010)

    Article  Google Scholar 

  3. Fan, X., Bi, L., Teng, T., et al.: A brain-computer interface-based vehicle destination selection system using P300 and SSVEP signals. IEEE Trans. Intell. Transport. Syst. 16(1), 274–283 (2015)

    Article  Google Scholar 

  4. Notbohm, A., Herrmann, C.S.: Flicker regularity is crucial for entrainment of alpha oscillations. Front. Hum. Neurosci. 10, 503 (2016)

    Google Scholar 

  5. Notbohm, A., Kurths, J., Herrmann, C.S.: Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front. Hum. Neurosci. 10, 10 (2016)

    Google Scholar 

  6. Dreyer, A.M., Herrmann, C.S.: Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces. J. Neurosci. Methods 241, 1–9 (2015)

    Article  Google Scholar 

  7. Dreyer, A.M., Herrmann, C.S., Rieger, J.W.: Tradeoff between user experience and BCI classification accuracy with frequency modulated steady-state visual evoked potentials. Front. Hum. Neurosci. 11, 391 (2017)

    Google Scholar 

  8. Lingelbach, K., Dreyer, A.M., Schöllhorn, I., et al.: Brain oscillation entrainment by perceptible and non-perceptible rhythmic light stimulation. Front. Neuroergon. 2, 9 (2021)

    Google Scholar 

  9. Ordikhani-Seyedlar, M., Sorensen, H.B.D., Kjaer, T.W., et al.: SSVEP-modulation by covert and overt attention: novel features for BCI in attention neuro-rehabilitation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5462–5465 (2014)

    Google Scholar 

  10. Bach, M.: The Freiburg Visual Acuity test–automatic measurement of visual acuity. Optom. Vis. Sci. 73(1), 49–53 (1996)

    Article  Google Scholar 

  11. Eisen-Enosh, A., Farah, N., Burgansky-Eliash, Z., et al.: Evaluation of critical flicker-fusion frequency measurement methods for the investigation of visual temporal resolution. Sci. Rep. 7(1), 15621 (2017)

    Article  Google Scholar 

  12. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  13. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  14. Chaumon, M., Bishop, D.V.M., Busch, N.A.: A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods 250, 47–63 (2015)

    Article  Google Scholar 

  15. Hipp, J.F., Siegel, M.: Dissociating neuronal gamma-band activity from cranial and ocular muscle activity in EEG. Front. Hum. Neurosci. 7, 338 (2013)

    Article  Google Scholar 

  16. Gaume, A., Vialatte, F., Dreyfus, G.: Transient brain activity explains the spectral content of steady-state visual evoked potentials. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 688–69 (2014)

    Google Scholar 

  17. Maris, E., Oostenveld, R.: Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164(1), 177–190 (2007)

    Article  Google Scholar 

  18. Oostenveld, R., Fries, P., Maris, E., et al.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, (2011)

    Article  Google Scholar 

  19. Vukelić, M., Gharabaghi, A.: Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage 111, 1–11 (2015)

    Article  Google Scholar 

  20. Müller-Putz, G.R., Scherer, R., Brauneis, C., et al.: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural Eng. 2(4), 123–130 (2005)

    Article  Google Scholar 

  21. Polich, J.: P300 as a clinical assay: rationale, evaluation, and findings. Int. J. Psychophysiol. 38(1), 3–19 (2000)

    Article  Google Scholar 

  22. Odom, J.V., Bach, M., Brigell, M., et al.: ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. 133(1), 1–9 (2016)

    Article  Google Scholar 

  23. Souza, G.S., Gomes, B.D., Lacerda, E.M.C.B., et al.: Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways. Vis. Neurosci. 25(3), 317–325 (2008)

    Article  Google Scholar 

  24. Ellemberg, D., Hammarrenger, B., Lepore, F., et al.: Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spat. Vis. 15(1), 99–111 (2001)

    Article  Google Scholar 

  25. Hillyard, S.A., Vogel, E.K., Luck, S.J.: Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353(1373), 1257–1270 (1998)

    Article  Google Scholar 

  26. Handy, T.C., Khoe, W.: Attention and sensory gain control: a peripheral visual process? J. Cogn. Neurosci. 17(12), 1936–1949 (2005)

    Article  Google Scholar 

  27. Müller, M.M., Hillyard, S.: Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention. Clin. Neurophysiol. 111(9), 1544–1552 (2000)

    Article  Google Scholar 

  28. Fong, C.Y., Law, W.H.C., Braithwaite, J.J., et al.: Differences in early and late pattern-onset visual-evoked potentials between self- reported migraineurs and controls. Neuroimage Clin. 25, (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Lingelbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lingelbach, K. et al. (2021). Investigating the Modulation of Spatio-Temporal and Oscillatory Power Dynamics by Perceptible and Non-perceptible Rhythmic Light Stimulation. In: Ayaz, H., Asgher, U., Paletta, L. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2021. Lecture Notes in Networks and Systems, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-80285-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80285-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80284-4

  • Online ISBN: 978-3-030-80285-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics