Towards Visually Intelligent Agents (VIA):
a Hybrid Approach

Agnese Chiattil
Middle stage PhD Student[orcid=0000—0003—3594—731X]

Knowledge Media Institute, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, United Kingdom
agnese.chiatti@open.ac.uk

Abstract. Service robots can undertake tasks that are impractical or
even dangerous for us - e.g., industrial welding, space exploration, and
others. To carry out these tasks reliably, however, they need Visual In-
telligence capabilities at least comparable to those of humans. Despite
the technological advances enabled by Deep Learning (DL) methods,
Machine Visual Intelligence is still vastly inferior to Human Visual Intel-
ligence. Methods which augment DL with Semantic Web technologies,
on the other hand, have shown promising results. In the lack of concrete
guidelines on which knowledge properties and reasoning capabilities to
leverage within this new class of hybrid methods, this PhD work provides
a reference framework of epistemic requirements for the development of
Visually Intelligent Agents (VIA). Moreover, the proposed framework is
used to derive a novel hybrid reasoning architecture, to address real-world
robotic scenarios which require Visual Intelligence.

Keywords: Hybrid Al - Visual Intelligence - Service Robotics.

1 Introduction and Motivation

With the fast-paced advancement of the Artificial Intelligence (AI) and Robotics
fields, there is an increasing potential to resort to service robots (or robot assis-
tants) to help with daily tasks, especially in scenarios where it is unsafe or
impractical for us to intervene - e.g., under extreme weather conditions or when
social distance needs to be maintained. However, succeeding in the real world
is a challenge because it requires robots to make sense of the high-volume and
diverse data collected through their perceptual sensors [2]. From the entry point
of vision, in particular, the problem then becomes one of enabling robots to
correctly interpret the stimuli of their vision system, with the support of back-
ground knowledge sources, a capability also known as Visual Intelligence [8].
The first prerequisite to building Visually Intelligent Agents (VIA) is the ability
to robustly recognise the different objects occupying the robot’s environment.
Let us consider the case of HanS, the Health and Safety (H&S) robot inspector
at the Knowledge Media Institute (KMi) [4]. HanS is expected to monitor the
Lab in search of potentially dangerous situations, such as fire hazards. Imagine
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that Hans was observing a flammable object (e.g., a paper cup) left on top of a
portable heater. To conclude that it is in the presence of a potential fire hazard,
the robot first needs to detect the cup and the heater. However, HanS also needs
access to many other reasoning capabilities and knowledge components: it needs
to know that paper cups are flammable, and that portable heaters can produce
heat. It also needs spatial reasoning capabilities, to infer that the cup is touching
the heater, and so forth.

Currently, the predominant approach to tackling visual reasoning tasks is
applying methods which are based on Machine Learning (ML). In particular,
the state-of-the-art performance is defined by the latest approaches based on
Deep Learning (DL) [22,20]. Despite their popularity, these methods have re-
ceived many critiques due to their brittleness and lack of transparency [24, 26,
28]. These limitations are particularly evident when compared against the ex-
cellence of the human vision system [19,15]. Indeed, we can learn rich object
representations very rapidly, even from minimal observations, and adapt these
representations to reflect changes in the environment. To compensate for the
limitations of ML-based methods, a more recent trend among Al researchers has
been to combine ML with knowledge-based reasoning, thus adopting a hybrid
approach [1,13]. Concurrently, thanks to efforts in the Semantic Web and Knowl-
edge Engineering communities, an increasing number of large-scale resources
encoding linguistical, encyclopaedical and common-sense knowledge have been
made available [30]. Thus, a promising research direction is capitalising on these
knowledge resources to develop hybrid reasoning architectures. A question re-
mains, however, on what type of knowledge resources and reasoning capabilities
should be leveraged within hybrid methods [11].

Based on these premises, the first objective of this PhD research is identi-
fying a set of epistemic requirements, i.e., a set of capabilities and knowledge
properties, required for service robots to exhibit Visual Intelligence. Another
objective is mapping these epistemic ingredients to the knowledge properties
available within state-of-the-art Knowledge Bases (KB), to evaluate to which
extent they can support VIA. Together, the produced requirement analysis and
coverage study provide a framework for the development of VIA which is fit for
use, as well as a research agenda to build improved knowledge representations
for robotic applications. Moreover, the error analysis informs our hypotheses on
which epistemic requirements to prioritise, in the real-world use-case of moni-
toring H&S in the office. Specifically, our intermediate results [8, 9] indicate that
knowledge of the typical size of objects and of their typical spatial locations
are key factors contributing to Visual Intelligence. Thus, in this work, a hybrid
architecture is proposed, which leverages both types of reasoners.

This paper is structured as follows. Section 2 reviews the state of the art in
autonomous reasoning for Visual Intelligence. The research questions informing
this work are presented in Section 3. Section 4 describes the methodological
rationale followed to tackle each of these questions. Additionally, the proposed
experimental design plan is discussed in Section 5. The proposal concludes with
overviewing the current research progress as well as the next relevant activities.
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2 Summary of Literature Review

Machine Learning methods (and the Deep Learning paradigm in particular) have
expedited the improvement on several Computer Vision benchmarks [22, 18, 14].
Deep Neural Networks (NNs), however, come with their limitations. These mod-
els (i) are notoriously data-hungry, (ii) assume to operate in a closed world [23],
and (iii) extract representational patterns through successive iterations over raw
data [20]. The latter trait can drastically reduce the start-up costs of feature
engineering. However, it also complicates tasks such as explaining results and
integrating explicit knowledge statements in the pipeline [24,28]. Considering
the limitations of state-of-the-art visual reasoning methods based on ML, hybrid
approaches to visual reasoning, i.e., methods which combine ML with knowledge-
based components, have been recently proposed [1,13]. In DL setups, in partic-
ular, knowledge-based reasoning can be integrated at four different levels of the
NN [1]: (i) in pre-processing, to augment the training examples [23], (ii) within
the intermediate layers [10], (iii) as part of the architectural topology or
optimisation function [25,29, 16] , and (iv) in the post-processing stages, to
validate the NN predictions [33]. Compared to the other classes of hybrid meth-
ods, a post-hoc approach offers the advantage of modularity, i.e., it is agnostic
to the specific ML architecture used. Additionally, this approach increases the
transparency of results, because it allows to decouple the ML predictions from
the knowledge-based predictions and, thus, to evaluate how the different archi-
tectural components contribute to the overall performance. This characteristic is
an important pre-condition to identifying the strengths, weaknesses and comple-
mentarities of each module, so that a more seamless integration is ensured and
potentially conflicting outcomes between the different ML-based and knowledge-
based predictors are handled effectively. For instance, on the one hand, apply-
ing off-the-shelf DL-based methods typically allows faster inference at test time
than querying various knowledge sources [19]. On the other hand, the integra-
tion of large-scale knowledge bases allows a more transparent control of which
knowledge properties and features contribute to the reasoning process. Thus, a
hybrid system is expected to capitalise on the best of both worlds. Nonetheless,
the literature lacks a systematic study of which ML-based and knowledge-based
components are to be leveraged in hybrid systems. Specifically, this PhD work
is focused on approaching this open problem from the angle of improving the
Visual Intelligence of robots to support real-world application scenarios.

With the evolution of Semantic Web technologies, many large-scale knowl-
edge resources have become available, which can be integrated within hybrid
frameworks, such as the knowledge representations surveyed in [27,30, 31, 21].
However, because several different types of background knowledge and reason-
ing capabilities are needed for robots to exhibit Visual Intelligence, choosing
which knowledge resources and reasoning components to prioritise within hy-
brid architectures remains an open problem [11]. In [8] we have analyzed the
types of classification errors emerging during robot monitoring activities, after
applying state-of-the-art ML methods. Our error analysis indicated that two
epistemic components, in particular, have the potential to significantly improve
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the robot’s capability to recognise objects: (i) the ability to compare objects
by size, (ii) qualitative spatial reasoning capabilities. Indeed, the intermediate
results of this PhD work [9] show that a novel hybrid system where knowledge
of the typical size of objects is integrated in post-processing can significantly
augment object recognition pipelines which are purely based on ML. With re-
spect to the implementation of spatial reasoning capabilities, we propose a novel
framework for qualitative spatial reasoning, which extends the work in [12,5].
Differently from existing approaches, the proposed approach provides a mapping
between formal representations of space in Al and the types of commonsense spa-
tial representations used in everyday language [3]. As such, the proposed repre-
sentational framework can be used to extract commonsense Qualitative Spatial
Relations (QSR) from large-scale KBs which encode spatial knowledge [31, 21,
30]. Crucially, the proposed mapping can be fully implemented with state-of-
the-art Geographic Information System (GIS) technologies.

Overall, the results obtained from evaluating the two proposed reasoners will
inform the implementation of a meta-reasoning architecture, which can exploit
the complementary strenghts of the ML-based and knowledge-based reasoners.

3 Problem Statement and Contributions

The main objective of this doctoral research is to study ways to improve the
Visual Intelligence of service robots when making sense of complex, real-world
environments. Based on evidence from the literature, the overarching hypothe-
sis is that: A hybrid approach (ML-based and knowledge-based) can improve a
robot’s performance on tasks that require Visual Intelligence (e.g., sensemaking),
compared to approaches which rely solely on Machine Learning techniques.

This hypothesis also raises a series of research questions. First, RQ1: what
are epistemic requirements, i.e., the set of required knowledge components and
reasoning capabilities, of developing Visually Intelligent Agents? Second, RQ2:
which epistemic requirements are the most important ones, in the considered use-
case scenario? Specifically, the intermediate results achieved while tackling RQ2
have indicated that two epistemic requirements, in particular, have the potential
to significantly enhance HanS’ Visual Intelligence: (i) the capability to reason on
the physical size of objects, and (ii) the capability to reason about the spatial
relations between objects. Therefore, the further inquiry will focus not only on
the extent to which the state-of-the-art Knowledge Bases support VIA (RQ3),
but also on the extent to which existing resources can be repurposed to support
size and spatial reasoning (RQ4). Hence, another related question is about the
extent to which a concrete architecture which effectively leverages both types of
reasoners can be developed (RQ5).

4 Research Methodology

To address RQ1, requirements are gathered both through a top-down approach,
i.e., based on seminal frameworks describing the human visual cognition, and
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Fig. 1. The proposed hybrid architecture which leverages size and spatial reasoning.
In this instance, hybrid reasoning is applied to the case of object recognition tasks.

from the bottom-up, i.e., based on the errors emerged from a real-world ap-
plication scenario. The incentive of taking inspiration from the Human Visual
Intelligence is motivated by the brittleness of current approaches to Machine
Visual Intelligence. In addition to cognitively-inspired requirements, however,
concrete requirements gather from error analysis are included as well. As such,
the error analysis also provides a way to asses the relative impact of each re-
quirement (RQ2). Moreover, the identified epistemic requirements can be used
to assess the coverage of each required knowledge component that is provided
with the state-of-the-art KBs identified in Section 2.3 (RQ3).

The results from RQ2 and RQ3 inform the selection of which reasoners and
external KBs to include in a concrete hybrid architecture for VIA, also exem-
plified in Figure 1. The proposed architecture integrates auxiliary knowledge
in post-processing, i.e., after generating the ML-based predictions. The object
recognition pipeline exemplified in Figure 1 relies on the state-of-the-art multi-
branch Network of [34]. In this setup, the NN is optimised to learn a feature
space where similar objects lie closer than dissimilar objects. Training triplets
consist of an anchor image, a positive (similar) example to the anchor, as well as
a negative (dissimilar) example. At inference time, for each observed object, a
ranking of object predictions is produced, based on similarity matching against
the learned image embeddings. A few-shot metric learning approach was chosen
as ML baseline to keep the required training examples to a minimum, while also
ensuring that objects unseen at training time can still be classified at test time,
by matching the learned representations against a reference image set. Never-
theless, the hybrid approach proposed in this work is general and any ML-based
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methods which provides the bounding boxes and predicted categories for the ob-
served objects can modularly interface with it. The Knowledge Base supporting
this reasoning architecture will include: (i) a novel coarse-grained representa-
tion of size abstracted from lower-level size features, as further illustrated in
[9], (ii) Qualitative Spatial Relations (QSR) gathered from a combination of
general-purpose KBs, which are repurposed automatically through a dedicated
knowledge fusion module (RQ4). Size and spatial knowledge is here represented
qualitatively, to ensure the scalability of the proposed solution to broader ap-
plication scenarios. A crucial component of the envisioned architecture is the
meta-reasoning module, where the outcomes of different reasoners are oppor-
tunely leveraged, to converge towards a final set of object predictions. Therefore,
a detailed ablation study will be carried out to identify the strengths and weak-
nesses of each component contributing to the overall performance. Indeed, the
background knowledge available may be incomplete or unreliable. Similarly, the
ML algorithm will be biased towards the patterns learned from the distribution
of the training set. Thus, conflicting recommendations need to be leveraged, in
an ensemble approach.

It is also worth noting that, although this PhD work is focused on implement-
ing an architecture which combines size and spatial reasoning with ML, the pro-
posed hybrid architecture is general, i.e., any other cognitive reasoner identified
in [8] can be plugged in. Thus, in Figure 1, we use the broad term ”Knowledge-
based Reasoning” to refer to the process validating the knowledge properties
extracted from the robot’s observations against knowledge priors gathered from
external resources. The size and spatial reasoner are only two instances of this
general approach.

Another requirement to test the utility of the proposed architecture (RQ5)
is defining a predetermined set of evaluation tasks that entail Visual Intelligence
capabilities. These tasks are derived from the use-case scenario of H&S monitor-
ing in the office. Namely, to anticipate the emergence of H&S threats through
Vision, a robot will need to: (i) robustly recognise a set of known objects in
a target environment (i.e., the task of object recognition), (ii) update its learn-
ing models and knowledge base, when exposed to new object classes (i.e., the
task of incremental object learning), (iii) react based on the interpreted state of
the environment - e.g., notify the designated fire wardens in case of a fire (i.e.,
decision-making tasks). An evaluation plan for each of these tasks is provided in
the next Section.

5 Evaluation Plan

KB Evaluation Based on the epistemic requirements identified through RQ1,
in [8], we have constructed a matrix where columns correspond to the identified
knowledge requirements and rows indicate the state-of-the-art KBs reviewed in
Section 2.3. The level of coverage of the required knowledge properties provided
with each KB was then assessed on a qualitative scale.
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Object Recognition The state-of-the-art ML methods presented in [34] were
taken as baseline to conduct preliminary trials during the robot’s patrolling
rounds. A qualitative error analysis has been conducted on the basis of these
preliminary data collection and trials, as further illustrated in [8]. Specifically,
each classification error was recorded on a Boolean matrix, to mark the epistemic
requirements which would have helped: (i) identifying the ground truth class,
or (ii) ruling out the incorrect class. Then, in [9], the reference ML baselines
were quantitatively evaluated on a larger dataset, to measure the performance
effects of integrating knowledge of the typical size of objects. Performance was
here evaluated based on: the PR and F1 of the top-1 predictions; the stan-
dard ranking quality metrics PQ5, Mean Normalised Discounted Cumulative
Gain (Mean nDCG@5) and hit ratio. Specifically, the P, R and F1 were aggre-
gated class-wise before and after weighing the averages by class support, i.e., the
number of instances within each class, to account for the natural class imbal-
ance in the dataset (e.g., fire extinguishers occur more often than printers, on
the robot’s scouting route). In these experiments, all object classes have been
treated as known, i.e., introduced since training time. The same experimental
setup will be replicated to test the introduction of the spatial reasoning mod-
ule. Moreover, further tests will be conducted to evaluate the computational
overhead introduced by the post-hoc reasoning steps, by tracking the processing
times of each tested hybrid solution. Additional metrics to measure the inter-
agreement (e.g., MCC and Cohen’s Kappa) between the different ML-based and
knowledge-based classifiers will be also considered, to inform the implementation
of the meta-reasoning module.

Incremental Object Learning To test the scalability of the proposed hybrid
framework to novel objects, i.e., unseen at training time, the first step has been
to reproduce the experimental setup of the selected ML baselines [34]. In this
setup, two ML-based methods are applied: (i) K-net, trained to overfit on a set
of known objects, (ii) N-net, conceived to generalise to novel objects. Indeed, the
dataset introduced in [34] in the context of the 2017 Amazon Robotic Challenge
includes a combination of known objects, i.e., seen since training time, and novel
objects, i.e., introduced only at test time. A preliminary ablation study on this
datasets has allowed us to test performance in the presence of novel object
classes. Because images in the Amazon dataset [34] only depict one object at a
time, this dataset is not suitable for evaluating the performance of the spatial
reasoner. Nonetheless, different splits of robot’s dataset collected at the prior
step will be tested, where only a subset of objects is treated as known.

Decision-making The objective of this phase is evaluating the robot’s ability to
reliably assess the state of risk of the environment it is monitoring. To this aim,
a set of Health & Safety risk assessment scenarios will be defined: e.g., notifying
fire wardens that a pile of paper was let on top of a portable heater or that the
path of an emergency exit is not correctly signalled. In this phase, H&S experts
at the Open University will be involved through a focus group discussion, to
converge towards a small set of use-case scenarios which the experts consider as
useful and worth implementing. Then, for each scenario, the robot’s performance
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will be evaluated based on: (i) the accuracy of the assessments (compared to the
expert’s indicated risk), (ii) the time elapsed before completing each assessment.

6 Summary of Intermediate Results

This Section summarises the current progress in tackling the research questions
guiding this PhD research. Thus, in what follows, intermediate results are or-
ganised by research question.

RQ1: what are the epistemic requirements of developing VIA? In [8], we
identified a set of top-down epistemic ingredients. Specifically, the requirement
of learning as model building is transversal to all the other ingredients and
entails: (i) defining concept representations and taxonomies which can be ade-
quately expanded as new concepts are learned, as well as (ii) causal reasoning
capabilities. The remaining top-down ingredients are: (iii) Intuitive Physics, (iv)
compositionality, (v) Generic 2D views, (vi) Motion Vision, and (vii) fast percep-
tion. Thanks to a bottom-up analysis of object recognition errors emerging in a
real-world robotic scenario, I have also completed the former set of requirements
with (viii) the Machine Reading capability.

RQ2: which epistemic requirements are the most important ones, in the con-
sidered use-case scenario? The error analysis conducted in [§8], also summarised
in Figure 2, indicates that the majority of ML misclassifications could have been
in principle avoided, with access to: (i) knowledge of the typical size of objects
and the capability to compare objects by size, which falls under the Intuitive
Physics component; (ii) knowledge of the typical Qualitative Spatial Relations
(QSR) between objects, as well as spatial reasoning capabilities, which are part of
the epistemic requirement of compositionality. Our most recent empirical find-
ings also confirmed that size reasoning can significantly augment the object
recognition performance of state-of-the-art ML solutions. On the KMi dataset
(Table 1), the tested hybrid solution which integrates all the proposed size fea-
tures (front surface area, thickness and Aspect Ratio) ensured to improve the
unweighted and weighted F1 scores by 6% and 5%, compared to ML baselines.
The quality of the top-5 results in the ranking also improved as a result of in-
troducing these knowledge priors. Notably, in the case of the Amazon dataset,
i.e., in the presence of known and novel objects, and of two ML algorithms of
complementary efficacy, the introduced size reasoner provided a rationale to dy-
namically choose which ML algorithm to apply in each case. As highlighted in
Table 2, the top-1 accuracy increased by 9.5% in this scenario.

RQ3: to what extent do the state-of-the-art Knowledge Bases support VIA?
In [8], we selected a set of KBs for review and assessed their coverage of the
knowledge properties required for VIA. None of the reviewed KBs covers the
identified knowledge requirements in full. The two most impactful knowledge
attributes exposed by the bottom-up analysis (the object relative sizes and QSR)
are covered only for a limited set of objects. Particularly striking is the lack
of comprehensive knowledge representations which describe the typical motion
trajectories of objects, e.g., as static or moving. Nonetheless, this coverage study
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Fig. 2. From [8]: percentage of cases where a specific component of Visual Intelligence
would help correcting or avoiding the classification error.

highlighted that most of the reviewed KBs are complementary to one another,
with respect to the types of provided knowledge properties. Thus, a promising
research direction is combining different external KBs to capitalise on synergistic
effects.

RQ4: to what extent the state-of-the-art Knowledge Bases be repurposed, to
support size and spatial reasoning? The positive performance results highlighted
in Tables 1 and 2 were achieved thanks to automatically generating a catalogue
of qualitative size descriptions from raw size measurements gathered from a
combination of ShapeNet (6], Amazon and manual collection. Moreover, in (7], we
have proposed a knowledge representation framework to map the commonsense
and linguistic spatial predicates provided with state-of-the-art KBs to both: (i)
the spatial operators available within state-of-the-art spatial databases, and (ii)
formal AI statements expressed in First Order Logic (FOL). The next step will
be applying the proposed framework to the extraction of spatial priors from
general-purpose KBs such as Visual Genome [17], SpatialSense [32], and others.

7 Conclusions and Lessons Learned

Before we delegate complex tasks to robots, we need to ensure that they can
reliably make sense of their environment. This PhD work proposes a framework
of epistemic requirements for the development of Visually Intelligent Agents
(VIA), i.e., robots which exhibit improved visual sensemaking capabilities. In
particular, the main hypothesis underlying this work is that adopting a hybrid
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Top-1 unweigh. Top-1 weigh. Top-5 unweigh.

Method P R F1 P R F1 P@5nDCG@5HR
N-net [34] 34.0 40.1 31.0 61.5 45.2 47.2 33.1 36.0 63.0
K-net [34] 39.0 39.9 34.0 68.0 47.9 50.4 38.5 40.7 65.1
Hybrid (area) 39.6 39.5 35.5 65.5 50.3 51.6 41.0 43.1 68.0
Hybrid (area+flat/non-flat) 41.0 39.3 35.7 65.8 50.1 52.1 40.5 42.8 65.8
Hybrid (area+thickness) 44.5 38.9 38.6 65.0 51.453.9 41.8 44.1 68.5
Hybrid (area+flat/non-flat+AR) 42.9 38.8 36.6  68.9 49.1 52.9 39.9 42.0 66.3
Hybrid (area+thickness+AR)  47.2 39.1 40.0 69.1 51.4 55.4 41.6 43.9 68.4

Table 1: Evaluation results (in percentages), on the KMi test set.

Top-1 accuracy Top-5 unweighted

Method Known Novel Mixed P@5 nDCG@5 HR

N-net [34] 56.8 82.1 64.6 619 62.7 72.6
K-net [34] 99.7 295 781 T73.7 75.0 82.4
Hybrid (area) 94.7 717 87.6 82.6 84.1 89.7
Hybrid (area + flat/non-flat) 94.5  71.7 87.5 82.5 84.0 89.7
Hybrid (area + thickness)  81.7 39.3 68.7 64.6 65.8 70.1

Table 2: Evaluation results (in percentages), on the test set of [34].

approach, which combines Machine Learning with Semantic Web technologies,
has the potential to significantly improve the performance of service robots on
tasks that require Visual Intelligence. To test this hypothesis, a system is devised
which integrates ML with two types of knowledge-based reasoners: (i) a reasoner
which can take object sizes into account, and (ii) a qualitative spatial reasoner.
The utility of this hybrid system is evaluated in the context of real-world robotic
scenarios. At the time of this writing, the epistemic framework for VIA has al-
ready been defined and used to verify the level of support to the development
of VIA which is provided with state-of-the-art Knowledge Bases [8]. Moreover,
the intermediate results of this work show that a hybrid reasoner which inte-
grates knowledge of the typical object sizes can significantly outperform object
recognition methods based on ML. Nonetheless, the evaluation of the proposed
framework is still incomplete, specifically with respect to testing: (i) the effects
of integrating the spatial reasoning module presented in [7], (ii) the possibil-
ity to leverage both reasoners to reconcile potentially conflicting outcomes, (iii)
the scalability to novel objects, as well as (iv) the level of support to concrete
decision-making tasks which require Visual Intelligence.
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