Abstract
Massive Open Online Courses (MOOC) often face low course retention rates due to lack of adaptability. We consider the personalized recommendation of learning content units to improve the learning experience, thus increasing retention rates. We propose a deep learning-based learning path construction model for personalized learning, based on knowledge tracing and reinforcement learning. We first trace a student’s knowledge using a deep learning-based knowledge tracing model to estimate its current knowledge state. Then, we adopt a deep reinforcement learning approach and use a student simulator to train a policy for exercise recommendation. During the recommendation process, we incorporate Bloom’s taxonomy’s cognitive level to enhance the recommendation quality. We evaluate our model through a user study and verify its usefulness as a learning tool that supports effective learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ai, F., et al.: Concept-aware deep knowledge tracing and exercise recommendation in an online learning system. International Educational Data Mining Society (2019)
Anderson, L.W., Bloom, B.S., et al.: A taxonomy for learning, teaching, andassessing: a revision of Bloom’s taxonomy of educational objectives. Longman(2001)
Assami, S., Daoudi, N., Ajhoun, R.: Personalization criteria for enhancing learner engagement in mooc platforms. In: 2018 IEEE Global Engineering Education Conference (EDUCON), pp. 1265–1272. IEEE (2018)
de Barba, P.G., Kennedy, G.E., Ainley, M.: The role of students’ motivation and participation in predicting performance in a mooc. J. Comput. Assisted Learn. 32(3), 218–231 (2016)
Bloom, B.S.: Taxonomy of educational objectives: the classification of educational goals. Cognitive domain (1956)
Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Modeling User-adapted Interaction 4(4), 253–278 (1994)
Doroudi, S., Aleven, V., Brunskill, E.: Where’s the reward? Int. J. Artif. Intell. Educ. 29(4), 568–620 (2019)
Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement learning for continuous control. In: International Conference on Machine Learning, pp. 1329–1338 (2016)
Govindarajan, K., Kumar, V.S., et al.: Dynamic learning path prediction-a learning analytics solution. In: 2016 IEEE Eighth International Conference on Technology for Education (T4E), pp. 188–193. IEEE (2016)
Hone, K.S., El Said, G.R.: Exploring the factors affecting mooc retention: a survey study. Comput. Educ. 98, 157–168 (2016)
Liu, Q., et al.: Exploiting cognitive structure for adaptive learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 627–635 (2019)
Onah, D.F., Sinclair, J., Boyatt, R.: Dropout rates of massive open online courses: behavioural patterns. In: EDULEARN14 Proceedings 1, pp. 5825–5834 (2014)
Piech, C., et al.: Deep knowledge tracing. Adv. Neural Inf. Process. Syst. 28, 505–513 (2015)
Rafferty, A.N., Brunskill, E., Griffiths, T.L., Shafto, P.: Faster teaching by POMDP planning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS (LNAI), vol. 6738, pp. 280–287. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21869-9_37
Reddy, S., Levine, S., Dragan, A.: Accelerating human learning with deep reinforcement learning. In: NIPS Workshop: Teaching Machines, Robots, and Humans (2017)
Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning, pp. 1889–1897 (2015)
Thomas, B., Chandra, J.: The effect of bloom’s taxonomy on random forest classifier for cognitive level identification of e-content. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) pp. 1–6. IEEE (2020)
Ullah, Z., Lajis, A., Jamjoom, M., Altalhi, A., Saleem, F.: Bloom’s taxonomy: abeneficial tool for learning and assessing students’ competency levels in computer programming using empirical analysis. Computer Applications in Engineering Education (2020)
Vitiello, M., Walk, S., Hernández, R., Helic, D., Gütl, C.: Classifying students to improve mooc dropout rates. Research Track, p. 501 (2016)
Yang, F., Li, F.W., Lau, R.W.: A fine-grained outcome-based learning path model. IEEE Trans. Syst. Man Cybern. Syst. 44(2), 235–245 (2013)
Yu, H., Miao, C., Leung, C., White, T.J.: Towards ai-powered personalization in mooc learning. npj Sci. Learn. 2(1), 1–5 (2017)
Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the 26th International Conference on World Wide Web, pp. 765–774 (2017)
Acknowledgements
This work was supported by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00368, A Neural-Symbolic Model for Knowledge Acquisition and Inference Techniques).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, S., Kim, W., Kim, H. (2021). Learning Path Construction Using Reinforcement Learning and Bloom’s Taxonomy. In: Cristea, A.I., Troussas, C. (eds) Intelligent Tutoring Systems. ITS 2021. Lecture Notes in Computer Science(), vol 12677. Springer, Cham. https://doi.org/10.1007/978-3-030-80421-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-80421-3_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80420-6
Online ISBN: 978-3-030-80421-3
eBook Packages: Computer ScienceComputer Science (R0)