Abstract
Massive Open Online Course (MOOC) systems have become prevalent in recent years and draw more attention, a.o., due to the coronavirus pandemic’s impact. However, there is a well-known higher chance of dropout from MOOCs than from conventional off-line courses. Researchers have implemented extensive methods to explore the reasons behind learner attrition or lack of interest to apply timely interventions. The recent success of neural networks has revolutionised extensive Learning Analytics (LA) tasks. More recently, the associated deep learning techniques are increasingly deployed to address the dropout prediction problem. This survey gives a timely and succinct overview of deep learning techniques for MOOCs’ learning analytics. We mainly analyse the trends of feature processing and the model design in dropout prediction, respectively. Moreover, the recent incremental improvements over existing deep learning techniques and the commonly used public data sets have been presented. Finally, the paper proposes three future research directions in the field: knowledge graphs with learning analytics, comprehensive social network analysis, composite behavioural analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamopoulos, P.: What makes a great MOOC? An interdisciplinary analysis of student retention in online courses. In: International Conference on Information Systems (2013)
Akshay, A., Andreas, P.: The stanford MOOCPosts data set. https://datastage.stanford.edu/StanfordMoocPosts/. Accessed 28 Jan 2021
Al-Shabandar, R., Hussain, A., Laws, A., Keight, R., Lunn, J., Radi, N.: Machine learning approaches to predict learning outcomes in massive open online courses. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 713–720. IEEE (2017)
Alamri, A., Sun, Z., Cristea, A.I., Senthilnathan, G., Shi, L., Stewart, C.: Is MOOC learning different for dropouts? A visually-driven, multi-granularity explanatory ML approach. In: Kumar, V., Troussas, C. (eds.) ITS 2020. LNCS, vol. 12149, pp. 353–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49663-0_42
Ardchir, S., Talhaoui, M.A., Jihal, H., Azzouazi, M.: Predicting MOOC dropout based on learner’s activity. Int. J. Eng. Technol. 7(4.32), 124–126 (2018)
Cazarez, R.L.U., Martin, C.L.: Neural networks for predicting student performance in online education. IEEE Lat. Am. Trans. 16(7), 2053–2060 (2018)
Chaplot, D.S., Rhim, E., Kim, J.: Predicting student attrition in MOOCs using sentiment analysis and neural networks. In: AIED Workshops, vol. 53, pp. 54–57 (2015)
Cristea, A.I., Alamri, A., Kayama, M., Stewart, C., Alsheri, M., Shi, L.: Earliest predictor of dropout in MOOCs: a longitudinal study of futurelearn courses. In: Information Systems Development: Designing Digitalization. Association for Information Systems (2018)
Crossley, S., Paquette, L., Dascalu, M., McNamara, D.S., Baker, R.S.: Combining click-stream data with NLP tools to better understand MOOC completion. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, pp. 6–14 (2016)
Dalipi, F., Imran, A.S., Kastrati, Z.: MOOC dropout prediction using machine learning techniques: review and research challenges. In: 2018 IEEE Global Engineering Education Conference (EDUCON), pp. 1007–1014. IEEE (2018)
Dang, F., Tang, J., Li, S.: MOOC-KG: a MOOC knowledge graph for cross-platform online learning resources. In: 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 1–8. IEEE (2019)
Dietze, S., Taibi, D., d’Aquin, M.: Facilitating scientometrics in learning analytics and educational data mining-the LAK dataset. Semant. Web 8(3), 395–403 (2017)
Dmoshinskaia, N.: Dropout prediction in MOOCs: using sentiment analysis of users’ comments to predict engagement. Master’s thesis, University of Twente (2016)
Fei, M., Yeung, D.Y.: Temporal models for predicting student dropout in massive open online courses. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 256–263. IEEE (2015)
Fotso, J.E.M., Batchakui, B., Nkambou, R., Okereke, G.: Algorithms for the development of deep learning models for classification and prediction of behaviour in MOOCs. In: IEEE Learning With MOOCS (LWMOOCS), pp. 180–184. IEEE (2020)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)
Guo, B., Zhang, R., Xu, G., Shi, C., Yang, L.: Predicting students performance in educational data mining. In: 2015 International Symposium on Educational Technology (ISET), pp. 125–128. IEEE (2015)
Guo, S.X., Sun, X., Wang, S.X., Gao, Y., Feng, J.: Attention-based character-word hybrid neural networks with semantic and structural information for identifying of urgent posts in MOOC discussion forums. IEEE Access 7, 120522–120532 (2019)
Rahmani Hanzaki, M., Demmans Epp, C.: The effect of personality and course attributes on academic performance in MOOCs. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.) EC-TEL 2018. LNCS, vol. 11082, pp. 497–509. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98572-5_38
He, Y., et al.: Online at-risk student identification using RNN-GRU joint neural networks. Information 11(10), 474 (2020)
Hone, K.S., El Said, G.R.: Exploring the factors affecting MOOC retention: a survey study. Comput. Educ. 98, 157–168 (2016)
Jordan, K.: Massive open online course completion rates revisited: assessment, length and attrition. Int. Rev. Res. Open Distrib. Learn. 16(3), 341–358 (2015)
Kang, T., Wei, Z., Huang, J., Yao, Z.: MOOC student success prediction using knowledge distillation. In: 2020 International Conference on Computer Information and Big Data Applications (CIBDA), pp. 363–367. IEEE (2020)
Karimi, H., Derr, T., Huang, J., Tang, J.: Online academic course performance prediction using relational graph convolutional neural network. In: Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020), pp. 444–450 (2020)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Kőrösi, G., Farkas, R.: MOOC performance prediction by deep learning from raw clickstream data. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Valentino, G. (eds.) ICACDS 2020. CCIS, vol. 1244, pp. 474–485. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6634-9_43
Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)
Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Sci. Data 4(1), 1–8 (2017)
Lang, C., Siemens, G., Wise, A., Gasevic, D.: Handbook of Learning Analytics. SOLAR, Society for Learning Analytics and Research, New York (2017)
Li, H., Wei, H., Wang, Y., Song, Y., Qu, H.: Peer-inspired student performance prediction in interactive online question pools with graph neural network. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2589–2596 (2020)
Li, W., Gao, M., Li, H., Xiong, Q., Wen, J., Wu, Z.: Dropout prediction in moocs using behavior features and multi-view semi-supervised learning. In: 2016 international joint conference on neural networks (IJCNN). pp. 3130–3137. IEEE (2016)
Liu, B., Xing, W., Zeng, Y., Wu, Y.: Quantifying the influence of achievement emotions for student learning in MOOCs. J. Educ. Comput. Res. 59(3), 429–452 (2021)
Liu, L., et al.: Prerequisite relation learning for course concepts based on hyperbolic deep representation. IEEE Access 8, 49079–49089 (2020)
HarvardX-MITx: HarvardX-MITx person-course academic year 2013 de-identified dataset, version 2.0. Harvard Dataverse (2014)
Morris, N.P., Swinnerton, B., Hotchkiss, S.: Can demographic information predict MOOC learner outcomes? In: Experience Track: Proceedings of the European MOOC Stakeholder, Leeds (2015)
Mulyani, E., Hidayah, I., Fauziati, S.: Dropout prediction optimization through smote and ensemble learning. In: 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 516–521. IEEE (2019)
Pekrun, R., Lichtenfeld, S., Marsh, H.W., Murayama, K., Goetz, T.: Achievement emotions and academic performance: longitudinal models of reciprocal effects. Child Dev. 88(5), 1653–1670 (2017)
Pulikottil, S.C., Gupta, M.: ONet-a temporal meta embedding network for MOOC dropout prediction. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 5209–5217. IEEE (2020)
Qiu, L., Liu, Y., Hu, Q., Liu, Y.: Student dropout prediction in massive open online courses by convolutional neural networks. Soft. Comput. 23(20), 10287–10301 (2019)
Raga, R.C., Raga, J.D.: Early prediction of student performance in blended learning courses using deep neural networks. In: 2019 International Symposium on Educational Technology (ISET), pp. 39–43. IEEE (2019)
Romero, C., Ventura, S.: Educational data mining and learning analytics: an updated survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(3), e1355 (2020)
Rossi, L.A., Gnawali, O.: Language independent analysis and classification of discussion threads in Coursera MOOC forums. In: Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014), pp. 654–661. IEEE (2014)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Sun, D., Mao, Y., Du, J., Xu, P., Zheng, Q., Sun, H.: Deep learning for dropout prediction in MOOCs. In: 2019 Eighth International Conference on Educational Innovation through Technology (EITT), pp. 87–90. IEEE (2019)
Tang, J.K.T., Xie, H., Wong, T.-L.: A big data framework for early identification of dropout students in MOOC. In: Lam, J., Ng, K.K., Cheung, S.K.S., Wong, T.L., Li, K.C., Wang, F.L. (eds.) ICTE 2015. CCIS, vol. 559, pp. 127–132. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48978-9_12
Tang, S., Peterson, J., Pardos, Z.: Predictive modeling of student behavior using granular large scale action data from a MOOC. In: Handbook of Learning Analytics and Educational Data Mining (2017)
Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Viberg, O., Hatakka, M., Bälter, O., Mavroudi, A.: The current landscape of learning analytics in higher education. Comput. Hum. Behav. 89, 98–110 (2018)
Wang, H., et al.: Exploring high-order user preference on the knowledge graph for recommender systems. ACM Trans. Inf. Syst. (TOIS) 37(3), 1–26 (2019)
Wang, L., Wang, H.: Learning behavior analysis and dropout rate prediction based on MOOCs data. In: 2019 10th International Conference on Information Technology in Medicine and Education (ITME), pp. 419–423. IEEE (2019)
Wang, W., Yu, H., Miao, C.: Deep model for dropout prediction in MOOCs. In: Proceedings of the 2nd International Conference on Crowd Science and Engineering, pp. 26–32 (2017)
Wei, X., Lin, H., Yang, L., Yu, Y.: A convolution-LSTM-based deep neural network for cross-domain MOOC forum post classification. Information 8(3), 92 (2017)
Wen, Y., Tian, Y., Wen, B., Zhou, Q., Cai, G., Liu, S.: Consideration of the local correlation of learning behaviors to predict dropouts from MOOCs. Tsinghua Sci. Technol. 25(3), 336–347 (2019)
Whitehill, J., Mohan, K., Seaton, D., Rosen, Y., Tingley, D.: Delving deeper into MOOC student dropout prediction. arXiv preprint arXiv:1702.06404 (2017)
Xing, W., Chen, X., Stein, J., Marcinkowski, M.: Temporal predication of dropouts in MOOCs: reaching the low hanging fruit through stacking generalization. Comput. Hum. Behav. 58, 119–129 (2016)
Xing, W., Du, D.: Dropout prediction in MOOCs: using deep learning for personalized intervention. J. Educ. Comput. Res. 57(3), 547–570 (2019)
Xiong, F., Zou, K., Liu, Z., Wang, H.: Predicting learning status in MOOCs using LSTM. In: Proceedings of the ACM Turing Celebration Conference-China, pp. 1–5 (2019)
Xu, Z., Ou, Z., Su, Q., Yu, J., Quan, X., Lin, Z.: Embedding dynamic attributed networks by modeling the evolution processes. arXiv preprint arXiv:2010.14047 (2020)
Yang, D., Wen, M., Howley, I., Kraut, R., Rose, C.: Exploring the effect of confusion in discussion forums of massive open online courses. In: Proceedings of the Second (2015) ACM Conference on Learning@ Scale, pp. 121–130 (2015)
Yin, S., Lei, L., Wang, H., Chen, W.: Power of attention in MOOC dropout prediction. IEEE Access 8, 202993–203002 (2020)
Yu, C.H., Wu, J., Liu, A.C.: Predicting learning outcomes with MOOC clickstreams. Educ. Sci. 9(2), 104 (2019)
Zaporozhko, V.V., Parfenov, D.I., Shardakov, V.M.: Development approach of formation of individual educational trajectories based on neural network prediction of student learning outcomes. In: Hu, Z., Petoukhov, S., He, M. (eds.) AIMEE 2019. AISC, vol. 1126, pp. 305–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39162-1_28
Zhang, K., Xu, J., Min, M.R., Jiang, G., Pelechrinis, K., Zhang, H.: Automated it system failure prediction: a deep learning approach. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1291–1300. IEEE (2016)
Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. (2020)
Zheng, Y., Gao, Z., Wang, Y., Fu, Q.: MOOC dropout prediction using FWTS-CNN model based on fused feature weighting and time series. IEEE Access 8, 225324–225335 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, Z., Harit, A., Yu, J., Cristea, A.I., Shi, L. (2021). A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs. In: Cristea, A.I., Troussas, C. (eds) Intelligent Tutoring Systems. ITS 2021. Lecture Notes in Computer Science(), vol 12677. Springer, Cham. https://doi.org/10.1007/978-3-030-80421-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-80421-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80420-6
Online ISBN: 978-3-030-80421-3
eBook Packages: Computer ScienceComputer Science (R0)