Skip to main content

Data-Driven Speed-of-Sound Reconstruction for Medical Ultrasound: Impacts of Training Data Format and Imperfections on Convergence

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Abstract

B-mode imaging is a qualitative method and its interpretation depends on users’ experience. Quantitative tissue information can increase precision and decrease user ambiguity. For example, Speed-of-Sound (SoS) in tissue is known to carry diagnostic information. Studies showed the possibility of SoS reconstruction from ultrasound raw data (a.k.a., RF data) using deep neural networks (DNNs). However, many ultrasound systems are designed to process demodulated data (i.e., IQ data) and often decimate data in early stages of acquisition. In this study we investigated the impacts of input data format and decimation on convergence of the DNNs for SoS reconstruction. Our results show that fully data-driven SoS reconstruction is possible using demodulated ultrasound data presented in Cartesian or Polar format using an encoder-decoder network. We performed a study using only amplitude and only phase information of ultrasound data for SoS reconstruction. Our results showed that distortion of the phase information results in inconsistent SoS predictions, indicating sensitivity of the investigated approach to phase information. We demonstrated that without losing significant accuracy, decimated IQ data can be used for SoS reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin, A., et al.: Surgery for obesity and related diseases: I. A novel approach to the quantification of the longitudinal speed of sound and its potential for tissue characterization. Ultrasound Med. Biol. 44(12), 2739–2748 (2018)

    Article  Google Scholar 

  2. Bernhardt, M., Vishnevskiy, V., Rau, R., Goksel, O.: Training variational networks with multidomain simulations: speed-of-sound image reconstruction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2584–2594 (2020)

    Article  Google Scholar 

  3. Cho, J., Lee, K., Shin, E., Choy, G., Do, S.: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv preprint arXiv:1511.06348 (2015)

  4. Feigin, M., Freedman, D., Anthony, B.W.: A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans. Biomed. Eng. 67(4), 1142–1151 (2019)

    Article  Google Scholar 

  5. Feigin, M., Zwecker, M., Freedman, D., Anthony, B.W.: Detecting muscle activation using ultrasound speed of sound inversion with deep learning. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2092–2095. IEEE (2020)

    Google Scholar 

  6. Hachiya, H., Ohtsuki, S., Tanaka, M.: Relationship between speed of sound in and density of normal and diseased rat livers. Jpn. J. Appl. Phys. 33(5S), 3130 (1994)

    Article  Google Scholar 

  7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  8. Jeong, W.K., Lim, H.K., Lee, H.K., Jo, J.M., Kim, Y.: Principles and clinical application of ultrasound elastography for diffuse liver disease. Ultrasonography 33(3), 149 (2014)

    Article  Google Scholar 

  9. Khodr, Z.G., et al.: Determinants of the reliability of ultrasound tomography sound speed estimates as a surrogate for volumetric breast density. Med. Phys. 42(10), 5671–5678 (2015)

    Article  Google Scholar 

  10. Khun Jush, F., Biele, M., Dueppenbecker, P.M., Schmidt, O., Maier, A.: DNN-based speed-of-sound reconstruction for automated breast ultrasound. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–7. IEEE (2020)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kirkhorn, J.: Introduction to IQ-demodulation of RF-data (1999)

    Google Scholar 

  13. Li, C., Duric, N., Littrup, P., Huang, L.: In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med. Biol. 35(10), 1615–1628 (2009)

    Article  Google Scholar 

  14. Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A.K.: Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Sig. Process. Mag. 35(1), 20–36 (2018)

    Article  Google Scholar 

  15. Matsuhashi, T., Yamada, N., Shinzawa, H., Takahashi, T.: An evaluation of hepatic ultrasound speed in injury models in rats: correlation with tissue constituents. J. Ultrasound Med. 15(8), 563–570 (1996)

    Article  Google Scholar 

  16. Ongie, G., Jalal, A., Baraniuk, C.A.M.R.G., Dimakis, A.G., Willett, R.: Deep learning techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theor. 1, 39–56 (2020)

    Google Scholar 

  17. Qu, X., Azuma, T., Liang, J.T., Nakajima, Y.: Average sound speed estimation using speckle analysis of medical ultrasound data. Int. J. Comput. Assist. Radiol. Surg. 7(6), 891–899 (2012)

    Article  Google Scholar 

  18. Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017)

    Article  Google Scholar 

  19. Sanabria, S., et al.: Breast-density assessment with hand-held ultrasound: a novel biomarker to assess breast cancer risk and to tailor screening? Eur. Radiol. 28(8), 3165–3175 (2018). https://doi.org/10.1007/s00330-017-5287-9

    Article  Google Scholar 

  20. Sanabria, S.J., Rominger, M.B., Goksel, O.: Speed-of-sound imaging based on reflector delineation. IEEE Trans. Biomed. Eng. 66(7), 1949–1962 (2018)

    Article  Google Scholar 

  21. Stähli, P., Kuriakose, M., Frenz, M., Jaeger, M.: Forward model for quantitative pulse-echo speed-of-sound imaging. arXiv preprint arXiv:1902.10639 (2019)

  22. Szabo, T.L.: Diagnostic Ultrasound Imaging: Inside Out. Academic Press (2004)

    Google Scholar 

  23. Treeby, B.E., Cox, B.T.: k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)

    Article  Google Scholar 

  24. Vishnevskiy, V., Sanabria, S.J., Goksel, O.: Image reconstruction via variational network for real-time hand-held sound-speed imaging. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 120–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00129-2_14

    Chapter  Google Scholar 

  25. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Khun Jush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khun Jush, F., Dueppenbecker, P.M., Maier, A. (2021). Data-Driven Speed-of-Sound Reconstruction for Medical Ultrasound: Impacts of Training Data Format and Imperfections on Convergence. In: PapieĹĽ, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics