Skip to main content

Pancreas Volumetry in UK Biobank: Comparison of Models and Inference at Scale

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Abstract

The UK Biobank imaging sub-study enables large-scale measurement of pancreas volume, an important biomarker in metabolic disease, including diabetes. Previous methods utilised a pancreas-specific (PS) 3D MRI UK Biobank acquisition to automatically measure pancreas volume. This may lead to a clinically significant underestimation of volume, due to partial coverage of the pancreas in these acquisitions. To address this, we propose a pipeline for the accurate measurement of pancreas volume using stitched whole-body (WB) 3D MRI UK Biobank acquisitions and deep learning-based segmentation. We implement and compare the performance of six different U-Net-like model architectures, leveraging attention layers, recurrent layers, and residual blocks. Furthermore, we investigate pancreas volumetry in 42,313 subjects, separated by sex, and present novel results concerning the change in pancreas volume throughout the course of a day (diurnal variation). To the best of our knowledge, this is the largest pancreas volumetry study to date and the first to propose a pipeline using the whole-body UK Biobank MRI acquisitions to measure pancreas volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://biobank.ndph.ox.ac.uk/showcase/browse.cgi.

  2. 2.

    https://pytorch.org/.

  3. 3.

    https://www.terraform.io/.

References

  1. Schrader, H., et al.: Reduced pancreatic volume and \(\beta \)-cell area in patients with chronic pancreatitis. Gastroenterology 136(2), 513–522 (2009). http://dx.doi.org/10.1053/j.gastro.2008.10.083

  2. Saisho, Y., et al.: Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 20(8), 933–942 (2007)

    Article  Google Scholar 

  3. Saisho, Y.: Pancreas volume and fat deposition in diabetes and normal physiology: consideration of the interplay between endocrine and exocrine pancreas. Rev. Diabet. Stud. 13(2–3), 132–147 (2016)

    Article  Google Scholar 

  4. Macauley, M., Percival, K., Thelwall, P.E., Hollingsworth, K.G., Taylor, R.: Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS ONE 10(5), 1–14 (2015)

    Article  Google Scholar 

  5. Al-Mrabeh, A., et al.: 2-year remission of type 2 diabetes and pancreas morphology: a post-hoc analysis of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 8(12), 939–948 (2020). http://dx.doi.org/10.1016/S2213-8587(20)30303-X

  6. Cai, J., Lu, L., Xing, F., Yang, L.: Pancreas segmentation in CT and MRI via task-specific network design and recurrent neural contextual learning. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. ACVPR, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13969-8_1

    Chapter  Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). http://dx.doi.org/10.1038/s41592-020-01008-z

  8. Sudlow, C., et al.: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. Plos Med 12(3), e1001779 (2015)

    Article  Google Scholar 

  9. Littlejohns, T.J., et al.: The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nature Commun. 11(1), 1–12 (2020). http://dx.doi.org/10.1038/s41467-020-15948-9

  10. Liu, Y., et al.: Genetic architecture of 11 abdominal organ traits derived from abdominal MRI using deep learning, pp. 1–66 (2020)

    Google Scholar 

  11. Bagur, A.T., Ridgway, G., McGonigle, J., Brady, S.M., Bulte, D.: Pancreas segmentation-derived biomarkers: volume and shape metrics in the UK biobank imaging study. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 131–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_11

    Chapter  Google Scholar 

  12. Calandra, A., Sartoris, R., Lee, K.J., Gauss, T., Vilgrain, V., Ronot, M.: Quantification of pancreas surface Lobularity on CT: a feasibility study in the normal pancreas (2020)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  15. Linge, J., et al.: Body composition profiling in the UK biobank imaging study. Obesity 26(11), 1785–1795 (2018)

    Article  Google Scholar 

  16. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010). https://www.ncbi.nlm.nih.gov/pubmed/20378467, www.ncbi.nlm.nih.gov/pmc/PMC3071855/

  17. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  18. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)

    Google Scholar 

  19. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, pp. 565–571 (2016)

    Google Scholar 

  20. Alom, M.Z., Yakopcic, C., Hasan, M., Taha, T.M., Asari, V.K.: Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 6(1), 014006 (2019)

    Google Scholar 

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res. 18, 1–36 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Heinrich, M.P., Oktay, O., Bouteldja, N.: OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Med. Image Anal. 54, 1–9 (2019)

    Google Scholar 

  25. Owler, J., McGonigle, J., Robson, M., Brady, M., Banerjee, R.: Liver volume diurnal variation in UK biobank. In: The Liver Meeting Digital Experience\(^{\rm TM}\). AASLD (2020)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Perspectum Ltd and the Engineering and Physical Sciences Research Council (EPSRC) for funding and support. This research has been conducted using the UK Biobank resource under application 9914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Owler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Owler, J. et al. (2021). Pancreas Volumetry in UK Biobank: Comparison of Models and Inference at Scale. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics