Abstract
Inspection engineering is a highly important field in the Oil & Gas sector for analysing the health of offshore assets. Corrosion, a naturally occurring phenomenon, arises as a result of a chemical reaction between a metal and its environment, causing it to degrade over time. Costing the global economy an estimated US $2.5 Trillion per annum, the destructive nature of corrosion is evident. Following the downturn endured by the industry in recent times, the need to combat corrosion is escalated, as companies look to cut costs by increasing efficiency of operations without compromising critical processes. This paper presents a step towards automating solutions for real-time inspection using state-of-the-art computer vision and deep learning techniques. Experiments concluded that there is potential for the application of computer vision in the inspection domain. In particular, Mask R-CNN applied on the original images (i.e. without any form of pre-processing) was found to be most viable solution, with the results showing a mAP of 77.1%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The dataset can be downloaded from https://drive.google.com/drive/folders/1dbOVdg5x75brUAwuI2X6voIMEwJzfiYX?usp=sharing.
- 3.
Experiments were run on a MacBook Pro with a 2.3 GHz Dual-Core Intel Core i5 processor, 8 GB 2133 MHz LPDDR3 memory and an Intel Iris Plus Graphics 640 1536 MB graphics card.
References
Yang, Y., Khan, F., Thodi, P., Abbassi, R.: 2021 Corrosion induced failure analysis of subsea pipelines (2021)
Anantharaman, R., Velazquez, M., Lee, Y.: Utilizing mask R-CNN for detection and segmentation of oral diseases. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 2018, pp. 2197–2204 (2018). https://doi.org/10.1109/BIBM.2018.8621112
Wu, F., Jin, G., Gao, M., He, Z., Yang, Y.: Helmet detection based on improved YOLO V3 deep model. In: 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 2019, pp. 363–368 (2019). https://doi.org/10.1109/ICNSC.2019.8743246
Badue, C., et al.: A 2021 Self-driving cars: a survey (2021)
Szymak, P., Piskur, P., Naus, K.: The effectiveness of using a pretrained deep learning neural networks for object classification in underwater video. Remote Sens. 12(18), 1–19 (2020)
Arnold-Bos, A., Malkasse, J.-P., Kervern, G.: A preprocessing framework for automatic underwater images denoising. In: European Conference on Propagation and Systems, Mar 2005, Brest, France (2005). ffhal-00494314
Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.-P.: Automatic underwater image pre-processing. In: CMM 2006, Oct 2006, Brest, France (2006). ffhal-00504893
Huang, S., Cheng, F., Chiu, Y.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013). https://doi.org/10.1109/TIP.2012.2226047
Abdullah-Al-Wadud, M., Kabir, M.H., Akber Dewan, M.A., Chae, O.: A dynamic histogram equalization for image contrast enhancement. In: IEEE Transactions on Consumer Electronics, vol. 53, no. 2, pp. 593–600 (2007). https://doi.org/10.1109/TCE.2007.381734
Setiawan, A.W., Mengko, T.R., Santoso, O.S., Suksmono, A.B.: Color retinal image enhancement using CLAHE. In: International Conference on ICT for Smart Society, Jakarta, Indonesia, pp. 1–3 (2013). https://doi.org/10.1109/ICTSS.2013.6588092
Ponraj, D.N., Jenifer, M.E., Poongodi, P., Manoharan, J.S.: A survey on the preprocessing techniques of mammogram for the detection of breast cancer. J. Emerg. Trends Comput. Inf. Sci. 2(12), 656–664 (2011)
Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000). https://doi.org/10.1109/83.841534
Zimmerman, J.B., Pizer, S.M., Staab, E.V., Perry, J.R., McCartney, W., Brenton, B.C.: An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imaging 7(4), 304–312 (1988). https://doi.org/10.1109/42.14513
Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., Muller, K.E.: Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, pp. 337–345 (1990). https://doi.org/10.1109/VBC.1990.109340
Hitam, M.S., Awalludin, E.A., Yussof, J.H.W., Bachok, Z.: Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In: 2013 International Conference on Computer Applications Technology (ICCAT), Sousse, Tunisia, pp. 1–5 (2013). https://doi.org/10.1109/ICCAT.2013.6522017
Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Sig. Process.-Syst. Signal Image Video Technol. 38, 35–44 (2004). https://doi.org/10.1023/B:VLSI.0000028532.53893.82
Han, J., Yang, S., Lee, B.: A novel 3-D color histogram equalization method with uniform 1-D gray scale histogram. IEEE Trans. Image Process. 20(2), 506–512 (2011). https://doi.org/10.1109/TIP.2010.2068555
Ghani, A.S.A., Isa, N.A.M.: Enhancement of low quality underwater image through integrated global and local contrast correction. Appl. Soft Comput. 37, 332–344 (2015). https://doi.org/10.1016/j.asoc.2015.08.033. ISSN 1568–4946
Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 1703–1709 (2010). https://doi.org/10.1109/ICSMC.2010.5642311
Schechner, Y.Y., Karpel, N.: Clear underwater vision. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, 2004, pp. I–I (2004). https://doi.org/10.1109/CVPR.2004.1315078
Henke, B., Vahl, M., Zhou, Z.: Removing color cast of underwater images through non-constant color constancy hypothesis. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, pp. 20–24 (2013). https://doi.org/10.1109/ISPA.2013.6703708
Chikane, V., Fuh, C.-S.: Automatic white balance for digital still cameras. J. Inf. Sci. Eng. 22, 497–509 (2006)
Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(1), 379–393 (2018). https://doi.org/10.1109/TIP.2017.2759252
Foster, D.H.: Does colour constancy exist? Trends in Cognitive Sciences, vol. 7, no. 10, pp. 439–443 (2003). https://doi.org/10.1016/j.tics.2003.08.002. ISSN 1364–6613
Land, E.H.: The Retinex theory of color vision. In: Scientific American, vol. 237, no. 6, pp. 108–129 (1977). www.jstor.org/stable/24953876. Accessed 10 Mar 2021
Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X., Ding, X.: A retinex-based enhancing approach for single underwater image. In: 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, pp. 4572–4576 (2014). https://doi.org/10.1109/ICIP.2014.7025927
Hines, G., Rahman, Z., Jobson, D., Woodell, G.: Single-scale Retinex using digital signal processors (2005). Citeseerx.ist.psu.edu
Xie, B., Guo, F., Cai, Z.: Improved single image Dehazing using dark channel prior and multi-scale retinex. In: 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, pp. 848–851 (2010). https://doi.org/10.1109/ISDEA.2010.141
Vishwakarma, A.K., Mishra, A.: Color image enhancement techniques: a critical review. Indian J. Comput. Sci. Eng. 3(1), 39–45 (2012)
Deng, Z., Sun, H., Zhou, S., Zhao, J., Zou, H.: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(8), 3652–3664 (2017). https://doi.org/10.1109/JSTARS.2017.2694890
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv.org
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91
Fan, Q., Brown, L., Smith, J.: A closer look at faster R-CNN for vehicle detection. In: 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, pp. 124–129 (2016). https://doi.org/10.1109/IVS.2016.7535375
Lan, W., Dang, J., Wang, Y., Wang, S.: Pedestrian detection based on YOLO network model. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 2018, pp. 1547–1551 (2018). https://doi.org/10.1109/ICMA.2018.8484698
Du, J.: Understanding of object detection based on CNN family and YOLO. In Journal of Physics: Conference Series, vol. 1004, no. 1, p. 012029 (2018)
Zhu, H., Meng, F., Cai, J., Lu, S.: Beyond pixels: a comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J. Vis. Commun. Image Represent. 34, 12–27 (2016). https://doi.org/10.1016/j.jvcir.2015.10.012. (ISSN 1047–3203)
Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 3309–3318 (2017). https://doi.org/10.1109/CVPR.2017.353
Romera-Paredes, B., Torr, P.H.S.: Recurrent instance segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. LNCS, vol. 9910, pp. 312–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_19
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969 (2017)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1520–1528 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pirie, C., Moreno-Garcia, C.F. (2021). Image Pre-processing and Segmentation for Real-Time Subsea Corrosion Inspection. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds) Proceedings of the 22nd Engineering Applications of Neural Networks Conference. EANN 2021. Proceedings of the International Neural Networks Society, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-80568-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-80568-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80567-8
Online ISBN: 978-3-030-80568-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)