Skip to main content

Toward an Augmented and Explainable Machine Learning Approach for Classification of Defective Nanomaterial Patches

  • Conference paper
  • First Online:
Proceedings of the 22nd Engineering Applications of Neural Networks Conference (EANN 2021)

Abstract

Electrospinning is a manufacturing technique used to produce nanofibers for engineering applications. This process depends on several control parameters (such as solution concentration, applied voltage, flow rate, tip-to-collector distance) whose variations during the experiments may lead to the formation of defective nanofibers (D-NF) along with non-defective nanofibers (ND-NF). D-NF present either with impurities or morphological defects that prevent their practical use in nanotechnology. In this context, here, a data augmentation based machine learning approach is proposed to classify Scanning Electron Microscope (SEM) images in two classes (i.e., D-NF vs. ND-NF). To this end, a custom Convolutional Neural Network (CNN) is developed to perform the binary classification task, achieving an accuracy rate up to 93.85%. Moreover, the explainability of the proposed CNN is also explored by means of an occlusion sensitivity analysis in order to investigate which area of the SEM image mostly contributes to the classification task. The achieved encouraging findings stimulate the use of the proposed framework in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teo, W.E., Ramakrishna, S.: A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)

    Article  Google Scholar 

  2. Agarwal, S., Wendorff, J.H., Greiner, A.: Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)

    Article  Google Scholar 

  3. Khil, M.S., Cha, D.I., Kim, H.Y., Kim, I.S., Bhattarai, N.: Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res. Part B: Appl. Biomater. Official J. Soc. Biomater. Japan. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 67(2), 675–679 (2003)

    Article  Google Scholar 

  4. Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., Jing, X.: Electrospinning of polymeric nanofibers for drug delivery applications. J. Controlled Release 185, 12–21 (2014)

    Article  Google Scholar 

  5. Suja, P., Reshmi, C., Sagitha, P., Sujith, A.: Electrospun nanofibrous membranes for water purification. Polym. Rev. 57(3), 467–504 (2017)

    Article  Google Scholar 

  6. Li, X., et al.: Electrospinning-based strategies for battery materials. Adv. Energy Mater. 11(2), 2000845 (2021)

    Article  Google Scholar 

  7. Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., Morabito, F.C.: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings. Neurocomputing 323, 96–107 (2019)

    Article  Google Scholar 

  8. Ieracitano, C., Adeel, A., Morabito, F.C., Hussain, A.: A novel statistical analysis and autoencoder driven intelligent intrusion detection approach. Neurocomputing 387, 51–62 (2020)

    Article  Google Scholar 

  9. Mammone, N., Ieracitano, C., Morabito, F.C.: A deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source level. Neural Netw. 124, 357–372 (2020)

    Article  Google Scholar 

  10. Carrera, D., Manganini, F., Boracchi, G., Lanzarone, E.: Defect detection in SEM images of nanofibrous materials. IEEE Trans. Indus. Inf. 13(2), 551–561 (2016)

    Article  Google Scholar 

  11. Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by CNN-based self-similarity. Sensors 18(1), 209 (2018)

    Article  Google Scholar 

  12. Ieracitano, C., Pantó, F., Mammone, N., Paviglianiti, A., Frontera, P., Morabito, F.C.: Toward an automatic classification of SEM images of nanomaterials via a deep learning approach. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Neural Approaches to Dynamics of Signal Exchanges. SIST, vol. 151, pp. 61–72. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8950-4_7

    Chapter  Google Scholar 

  13. Ieracitano, C., Paviglianiti, A., Mammone, N., Versaci, M., Pasero, E., Morabito, F.C.: SoCNNet: an optimized Sobel filter based convolutional neural network for SEM images classification of nanomaterials. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Progresses in Artificial Intelligence and Neural Systems. SIST, vol. 184, pp. 103–113. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5093-5_10

    Chapter  Google Scholar 

  14. Ieracitano, C., Paviglianiti, A., Campolo, M., Hussain, A., Pasero, E., Morabito, F.C.: A novel automatic classification system based on hybrid unsupervised and supervised machine learning for electrospun nanofibers. IEEE/CAA J. Automatica Sinica 8(1), 64–76 (2021)

    Article  Google Scholar 

  15. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE Transactions on Neural Networks and Learning Systems (2020)

    Google Scholar 

  16. Stepin, I., Alonso, J.M., Catala, A., Pereira-Fariña, M.: A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence. IEEE Access 9, 11974–12001 (2021)

    Article  Google Scholar 

  17. Meske, C., Bunde, E., Schneider, J., Gersch, M.: Explainable artificial intelligence: Objectives, stakeholders, and future research opportunities. Inf. Syst. Manage. 1–11 (2020)

    Google Scholar 

  18. Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)

    Article  Google Scholar 

  19. Uyar, T., Besenbacher, F.: Electrospinning of uniform polystyrene fibers: the effect of solvent conductivity. Polymer 49(24), 5336–5343 (2008)

    Article  Google Scholar 

  20. Zeng, J., Haoqing, H., Schaper, A., Wendorff, J.H., Greiner, A.: Poly-l-lactide nanofibers by electrospinning-influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 3(1), (2003)

    Google Scholar 

  21. Okutan, N., Terzi, P., Altay, F.: Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids 39, 19–26 (2014)

    Article  Google Scholar 

  22. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017)

    Google Scholar 

  23. Zhao, B., Feng, J., Wu, X., Yan, S.: A survey on deep learning-based fine-grained object classification and semantic segmentation. Int. J. Autom. Comput. 14(2), 119–135 (2017)

    Article  Google Scholar 

  24. Wang, W., Yang, Y., Wang, X., Wang, W., Li, J.: Development of convolutional neural network and its application in image classification: a survey. Optical Eng. 58(4), 040901 (2019)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  26. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by POR Calabria FESR FSE 2014–2020 grant number: C39B18000080002. The authors thank the Materials for Environmental and Energy Sustainability Laboratory from the University Mediterranea of Reggio Calabria, Italy, for the D-NF/ND-NF SEM images dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Ieracitano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ieracitano, C., Mammone, N., Paviglianiti, A., Morabito, F.C. (2021). Toward an Augmented and Explainable Machine Learning Approach for Classification of Defective Nanomaterial Patches. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds) Proceedings of the 22nd Engineering Applications of Neural Networks Conference. EANN 2021. Proceedings of the International Neural Networks Society, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-80568-5_21

Download citation

Publish with us

Policies and ethics