Skip to main content

Blockchained Adaptive Federated Auto MetaLearning BigData and DevOps CyberSecurity Architecture in Industry 4.0

  • Conference paper
  • First Online:
Proceedings of the 22nd Engineering Applications of Neural Networks Conference (EANN 2021)

Abstract

Maximizing the production process in modern industry, as proposed by Industry 4.0, requires extensive use of Cyber-Physical Systems (CbPS). Artificial intelligence technologies, through CbPS, allow monitoring of natural processes, making autonomous, decentralized and optimal decisions. Collection of information that optimizes the effectiveness of decisions, implies the need for big data management and analysis. This data is usually coming from heterogeneous sources and it might be non-interoperable. Big data management is further complicated by the need to protect information, to ensure business confidentiality and privacy, according to the recent General Data Protection Regulation - GDPR. This paper introduces an innovative holistic Blockchained Adaptive Federated Auto Meta Learning Big Data and DevOps Cyber Security Architecture in Industry 4.0. The aim is to fill the gap found in the ways of handling and securing industrial data. This architecture, combines the most modern software development technologies under an optimal and efficient framework. It successfully achieves the prediction and assessment of threat-related conditions in an industrial ecosystem, while ensuring privacy and secrecy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kannengiesser, U., Muller, H.: Towards viewpoint-oriented engineering for Industry 4.0: a standards-based approach. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, pp. 51–56 (2018). https://doi.org/10.1109/ICPHYS.2018.8387636

  2. Hossain, Md.M., Fotouhi, M., Hasan, R.: Towards an analysis of security issues, challenges, and open problems in the Internet of Things. In: 2015 IEEE World Congress on Services, NY, USA, pp. 21–28 (2015). https://doi.org/10.1109/SERVICES.2015.12

  3. Banafa, A.: 2 The Industrial Internet of Things (IIoT): challenges, requirements and benefits. In: Secure and Smart Internet of Things (IoT): Using Blockchain and AI, pp. 7–12. River Publishers (2018)

    Google Scholar 

  4. Ankele, R., Marksteiner, S., Nahrgang, K., Vallant, H.: Requirements and recommendations for IoT/IIoT models to automate security assurance through threat modelling, security analysis and penetration testing. In: Proceedings of the 14th International Conference on Availability, Reliability and Security, NY, USA, pp. 1–8 (2019). https://doi.org/10.1145/3339252.3341482

  5. Li, J.-Q., Yu, F.R., Deng, G., Luo, C., Ming, Z., Yan, Q.: Industrial internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun. Surv. Tutor. 19(3), 1504–1526 (2017). https://doi.org/10.1109/COMST.2017.2691349

    Article  Google Scholar 

  6. Wahab, O.A., Mourad, A., Otrok, H., Taleb, T.: Federated machine learning: survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Commun. Surv. Tutor., 1 (2021). https://doi.org/10.1109/COMST.2021.3058573

  7. Gebremichael, T., et al.: Security and privacy in the Industrial Internet of Things: current standards and future challenges. IEEE Access 8, 152351–152366 (2020). https://doi.org/10.1109/ACCESS.2020.3016937

    Article  Google Scholar 

  8. Demertzis, K.: Blockchained federated learning for threat defense. arXiv:2102.12746 Cs, February 2021. Accessed 26 Feb 2021

  9. Rantos, K., Drosatos, G., Demertzis, K., Ilioudis, C., Papanikolaou, A.: Blockchain-based consents management for personal data processing in the IoT ecosystem, pp. 572–577, February 2021. https://www.scitepress.org/PublicationsDetail.aspx?ID=+u1w9%2fItJqY%3d&t=1. Accessed 16 Feb 2021

  10. Rantos, K., Drosatos, G., Demertzis, K., Ilioudis, C., Papanikolaou, A., Kritsas, A.: ADvoCATE: a consent management platform for personal data processing in the IoT using blockchain technology. In: Lanet, J.-L., Toma, C. (eds.) SECITC 2018. LNCS, vol. 11359, pp. 300–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12942-2_23

    Chapter  Google Scholar 

  11. Demertzis, K., Iliadis, L., Tziritas, N., Kikiras, P.: Anomaly detection via blockchained deep learning smart contracts in industry 4.0. Neural Comput. Appl. 32(23), 17361–17378 (2020). https://doi.org/10.1007/s00521-020-05189-8

    Article  Google Scholar 

  12. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2020). https://doi.org/10.1109/JIOT.2019.2958185

    Article  Google Scholar 

  13. Demertzis, K., Iliadis, L.: A hybrid network anomaly and intrusion detection approach based on evolving spiking neural network classification. In: Sideridis, A.B., Kardasiadou, Z., Yialouris, C.P., Zorkadis, V. (eds.) E-Democracy 2013. CCIS, vol. 441, pp. 11–23. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11710-2_2

    Chapter  Google Scholar 

  14. Basyoni, L., Fetais, N., Erbad, A., Mohamed, A., Guizani, M.: Traffic analysis attacks on Tor: a survey. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 183–188 (2020). https://doi.org/10.1109/ICIoT48696.2020.9089497

  15. Alhawi, O.M.K., Baldwin, J., Dehghantanha, A.: Leveraging machine learning techniques for windows ransomware network traffic detection. In: Dehghantanha, A., Conti, M., Dargahi, T. (eds.) Cyber Threat Intelligence. AIS, vol. 70, pp. 93–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73951-9_5

    Chapter  Google Scholar 

  16. Balabanova, I., Kostadinova, S., Markova, V., Georgiev, G.: Analysis and categorization of traffic streams by artificial intelligence. In: 2019 International Conference on Biomedical Innovations and Applications (BIA), pp. 1–5 (2019). https://doi.org/10.1109/BIA48344.2019.8967475

  17. Demertzis, K., Iliadis, L., Bougoudis, I.: Gryphon: a semi-supervised anomaly detection system based on one-class evolving spiking neural network. Neural Comput. Appl. 32(9), 4303–4314 (2019). https://doi.org/10.1007/s00521-019-04363-x

    Article  Google Scholar 

  18. Hsu, C.-H., Huang, C.-Y., Chen, K.-T.: Fast-flux bot detection in real time. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 464–483. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15512-3_24

    Chapter  Google Scholar 

  19. Chen, Y.-S., Chen, Y.-M.: Combining incremental hidden Markov model and adaboost algorithm for anomaly intrusion detection. In: Proceedings of the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics, New York, NY, USA, pp. 3–9 (2009). https://doi.org/10.1145/1599272.1599276

  20. Alshammari, R., Nur Zincir-Heywood, A.: Identification of VoIP encrypted traffic using a machine learning approach. J. King Saud Univ. Comput. Inf. Sci. 27(1), 77–92 (2015). https://doi.org/10.1016/j.jksuci.2014.03.013

  21. Demertzis, K., Tziritas, N., Kikiras, P., Sanchez, S.L., Iliadis, L.: The next generation cognitive security operations center: adaptive analytic lambda architecture for efficient defense against adversarial attacks. Big Data Cogn. Comput. 3(1), 6 (2019). https://doi.org/10.3390/bdcc3010006

    Article  Google Scholar 

  22. Lee, H., Veeraraghavan, M., Li, H., Chong, E.K.P.: Lambda scheduling algorithm for file transfers on high-speed optical circuits. In: IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2004, pp. 617–624 (2004). https://doi.org/10.1109/CCGrid.2004.1336671

  23. Chen, L., Li, T., Abdulhayoglu, M., Ye, Y.: Intelligent malware detection based on file relation graphs. In: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), pp. 85–92 (2015). https://doi.org/10.1109/ICOSC.2015.7050784

  24. Sun, Y., Wang, Z., Liu, H., Du, C., Yuan, J.: Online ensemble using adaptive windowing for data streams with concept drift. Int. J. Distrib. Sens. Netw. 12(5), 4218973 (2016). https://doi.org/10.1155/2016/4218973

    Article  Google Scholar 

  25. Sobhani, P., Beigy, H.: New drift detection method for data streams. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS (LNAI), vol. 6943, pp. 88–97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23857-4_12

    Chapter  Google Scholar 

  26. Chen, Q., Abdelwahed, S.: A model-based approach to self-protection in SCADA systems. Presented at the 9th International Workshop on Feedback Computing (Feedback Computing 2014) (2014). https://www.usenix.org/conference/feedbackcomputing14/workshop-program/presentation/chen. Accessed 29 Mar 2021

  27. Soupionis, Y., Benoist, T.: Cyber attacks in power grid ICT systems leading to financial disturbance. In: Panayiotou, C.G.G., Ellinas, G., Kyriakides, E., Polycarpou, M.M.M. (eds.) CRITIS 2014. LNCS, vol. 8985, pp. 256–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31664-2_26

    Chapter  Google Scholar 

  28. Demertzis, K., Rantos, K., Drosatos, G.: A dynamic intelligent policies analysis mechanism for personal data processing in the IoT ecosystem. Big Data Cogn. Comput. 4(2), 9 (2020). https://doi.org/10.3390/bdcc4020009

    Article  Google Scholar 

  29. Sikeridis, D., Bidram, A., Devetsikiotis, M., Reno, M.J.: A blockchain-based mechanism for secure data exchange in smart grid protection systems. In: 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2020). https://doi.org/10.1109/CCNC46108.2020.9045368

  30. Llopis, S., et al.: A comparative analysis of visualisation techniques to achieve cyber situational awareness in the military. In: 2018 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1–7 (2018). https://doi.org/10.1109/ICMCIS.2018.8398693

  31. Çınar, C., Alkan, M., Dörterler, M., Doğru, İ.A.: A study on advanced persistent threat. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 116–121 (2018). https://doi.org/10.1109/UBMK.2018.8566348

  32. Azzedin, F., Suwad, H., Alyafeai, Z.: Counter measuring zero day attacks: asset-based approach. In: 2017 International Conference on High Performance Computing Simulation (HPCS), pp. 854–857 (2017). https://doi.org/10.1109/HPCS.2017.129

  33. Demertzis, K., Iliadis, L., Anezakis, V.-D.: A dynamic ensemble learning framework for data stream analysis and real-time threat detection. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 669–681. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_66

    Chapter  Google Scholar 

  34. Jirsik, T., Cermak, M., Tovarnak, D., Celeda, P.: Toward stream-based IP flow analysis. IEEE Commun. Mag. 55(7), 70–76 (2017). https://doi.org/10.1109/MCOM.2017.1600972

    Article  Google Scholar 

  35. Čermák, M., Tovarňák, D., Laštovička, M., Čeleda, P.: A performance benchmark for NetFlow data analysis on distributed stream processing systems. In: NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 919–924 (2016). https://doi.org/10.1109/NOMS.2016.7502926

  36. CESNET/ipfixcol2: CESNET (2021)

    Google Scholar 

  37. Apache Kafka: Apache Kafka. https://kafka.apache.org/. Accessed 29 Mar 2021

  38. Apache SparkTM - Unified Analytics Engine for Big Data. http://spark.apache.org/. Accessed 29 Mar 2021

  39. Free and Open Search: The Creators of Elasticsearch. ELK & Kibana | Elastic. https://www.elastic.co/. Accessed 29 Mar 2021

  40. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Jin, H., Song, Q., Hu, X.: Auto-Keras: an efficient neural architecture search system. arXiv:1806.10282 Cs Stat (2019). Accessed 29 Mar 2021

  42. Amazon Kinesis - Process & Analyze Streaming Data - Amazon Web Services. Amazon Web Services, Inc. https://aws.amazon.com/kinesis/. Accessed 29 Mar 2021

  43. Lindell, Y.: Secure multiparty computation (MPC), 300 (2020). http://eprint.iacr.org/2020/300. Accessed 29 Mar 2021

  44. Korkmaz, C., Kocas, H.E., Uysal, A., Masry, A., Ozkasap, O., Akgun, B.: Chain FL: decentralized federated machine learning via blockchain. In: 2020 Second International Conference on Blockchain Computing and Applications (BCCA), pp. 140–146 (2020). https://doi.org/10.1109/BCCA50787.2020.9274451

  45. Demertzis, K., Iliadis, L., Anezakis, V.: MOLESTRA: a multi-task learning approach for real-time big data analytics. In: 2018 Innovations in Intelligent Systems and Applications (INISTA), pp. 1–8 (2018). https://doi.org/10.1109/INISTA.2018.8466306

  46. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  47. luisquintanilla: Differential privacy in machine learning (preview) - Azure Machine Learning. https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy. Accessed 29 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Demertzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demertzis, K., Iliadis, L., Pimenidis, E., Tziritas, N., Koziri, M., Kikiras, P. (2021). Blockchained Adaptive Federated Auto MetaLearning BigData and DevOps CyberSecurity Architecture in Industry 4.0. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds) Proceedings of the 22nd Engineering Applications of Neural Networks Conference. EANN 2021. Proceedings of the International Neural Networks Society, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-80568-5_29

Download citation

Publish with us

Policies and ethics