Abstract
Maximizing the production process in modern industry, as proposed by Industry 4.0, requires extensive use of Cyber-Physical Systems (CbPS). Artificial intelligence technologies, through CbPS, allow monitoring of natural processes, making autonomous, decentralized and optimal decisions. Collection of information that optimizes the effectiveness of decisions, implies the need for big data management and analysis. This data is usually coming from heterogeneous sources and it might be non-interoperable. Big data management is further complicated by the need to protect information, to ensure business confidentiality and privacy, according to the recent General Data Protection Regulation - GDPR. This paper introduces an innovative holistic Blockchained Adaptive Federated Auto Meta Learning Big Data and DevOps Cyber Security Architecture in Industry 4.0. The aim is to fill the gap found in the ways of handling and securing industrial data. This architecture, combines the most modern software development technologies under an optimal and efficient framework. It successfully achieves the prediction and assessment of threat-related conditions in an industrial ecosystem, while ensuring privacy and secrecy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kannengiesser, U., Muller, H.: Towards viewpoint-oriented engineering for Industry 4.0: a standards-based approach. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, pp. 51–56 (2018). https://doi.org/10.1109/ICPHYS.2018.8387636
Hossain, Md.M., Fotouhi, M., Hasan, R.: Towards an analysis of security issues, challenges, and open problems in the Internet of Things. In: 2015 IEEE World Congress on Services, NY, USA, pp. 21–28 (2015). https://doi.org/10.1109/SERVICES.2015.12
Banafa, A.: 2 The Industrial Internet of Things (IIoT): challenges, requirements and benefits. In: Secure and Smart Internet of Things (IoT): Using Blockchain and AI, pp. 7–12. River Publishers (2018)
Ankele, R., Marksteiner, S., Nahrgang, K., Vallant, H.: Requirements and recommendations for IoT/IIoT models to automate security assurance through threat modelling, security analysis and penetration testing. In: Proceedings of the 14th International Conference on Availability, Reliability and Security, NY, USA, pp. 1–8 (2019). https://doi.org/10.1145/3339252.3341482
Li, J.-Q., Yu, F.R., Deng, G., Luo, C., Ming, Z., Yan, Q.: Industrial internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun. Surv. Tutor. 19(3), 1504–1526 (2017). https://doi.org/10.1109/COMST.2017.2691349
Wahab, O.A., Mourad, A., Otrok, H., Taleb, T.: Federated machine learning: survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Commun. Surv. Tutor., 1 (2021). https://doi.org/10.1109/COMST.2021.3058573
Gebremichael, T., et al.: Security and privacy in the Industrial Internet of Things: current standards and future challenges. IEEE Access 8, 152351–152366 (2020). https://doi.org/10.1109/ACCESS.2020.3016937
Demertzis, K.: Blockchained federated learning for threat defense. arXiv:2102.12746 Cs, February 2021. Accessed 26 Feb 2021
Rantos, K., Drosatos, G., Demertzis, K., Ilioudis, C., Papanikolaou, A.: Blockchain-based consents management for personal data processing in the IoT ecosystem, pp. 572–577, February 2021. https://www.scitepress.org/PublicationsDetail.aspx?ID=+u1w9%2fItJqY%3d&t=1. Accessed 16 Feb 2021
Rantos, K., Drosatos, G., Demertzis, K., Ilioudis, C., Papanikolaou, A., Kritsas, A.: ADvoCATE: a consent management platform for personal data processing in the IoT using blockchain technology. In: Lanet, J.-L., Toma, C. (eds.) SECITC 2018. LNCS, vol. 11359, pp. 300–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12942-2_23
Demertzis, K., Iliadis, L., Tziritas, N., Kikiras, P.: Anomaly detection via blockchained deep learning smart contracts in industry 4.0. Neural Comput. Appl. 32(23), 17361–17378 (2020). https://doi.org/10.1007/s00521-020-05189-8
Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2020). https://doi.org/10.1109/JIOT.2019.2958185
Demertzis, K., Iliadis, L.: A hybrid network anomaly and intrusion detection approach based on evolving spiking neural network classification. In: Sideridis, A.B., Kardasiadou, Z., Yialouris, C.P., Zorkadis, V. (eds.) E-Democracy 2013. CCIS, vol. 441, pp. 11–23. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11710-2_2
Basyoni, L., Fetais, N., Erbad, A., Mohamed, A., Guizani, M.: Traffic analysis attacks on Tor: a survey. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 183–188 (2020). https://doi.org/10.1109/ICIoT48696.2020.9089497
Alhawi, O.M.K., Baldwin, J., Dehghantanha, A.: Leveraging machine learning techniques for windows ransomware network traffic detection. In: Dehghantanha, A., Conti, M., Dargahi, T. (eds.) Cyber Threat Intelligence. AIS, vol. 70, pp. 93–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73951-9_5
Balabanova, I., Kostadinova, S., Markova, V., Georgiev, G.: Analysis and categorization of traffic streams by artificial intelligence. In: 2019 International Conference on Biomedical Innovations and Applications (BIA), pp. 1–5 (2019). https://doi.org/10.1109/BIA48344.2019.8967475
Demertzis, K., Iliadis, L., Bougoudis, I.: Gryphon: a semi-supervised anomaly detection system based on one-class evolving spiking neural network. Neural Comput. Appl. 32(9), 4303–4314 (2019). https://doi.org/10.1007/s00521-019-04363-x
Hsu, C.-H., Huang, C.-Y., Chen, K.-T.: Fast-flux bot detection in real time. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 464–483. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15512-3_24
Chen, Y.-S., Chen, Y.-M.: Combining incremental hidden Markov model and adaboost algorithm for anomaly intrusion detection. In: Proceedings of the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics, New York, NY, USA, pp. 3–9 (2009). https://doi.org/10.1145/1599272.1599276
Alshammari, R., Nur Zincir-Heywood, A.: Identification of VoIP encrypted traffic using a machine learning approach. J. King Saud Univ. Comput. Inf. Sci. 27(1), 77–92 (2015). https://doi.org/10.1016/j.jksuci.2014.03.013
Demertzis, K., Tziritas, N., Kikiras, P., Sanchez, S.L., Iliadis, L.: The next generation cognitive security operations center: adaptive analytic lambda architecture for efficient defense against adversarial attacks. Big Data Cogn. Comput. 3(1), 6 (2019). https://doi.org/10.3390/bdcc3010006
Lee, H., Veeraraghavan, M., Li, H., Chong, E.K.P.: Lambda scheduling algorithm for file transfers on high-speed optical circuits. In: IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2004, pp. 617–624 (2004). https://doi.org/10.1109/CCGrid.2004.1336671
Chen, L., Li, T., Abdulhayoglu, M., Ye, Y.: Intelligent malware detection based on file relation graphs. In: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), pp. 85–92 (2015). https://doi.org/10.1109/ICOSC.2015.7050784
Sun, Y., Wang, Z., Liu, H., Du, C., Yuan, J.: Online ensemble using adaptive windowing for data streams with concept drift. Int. J. Distrib. Sens. Netw. 12(5), 4218973 (2016). https://doi.org/10.1155/2016/4218973
Sobhani, P., Beigy, H.: New drift detection method for data streams. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS (LNAI), vol. 6943, pp. 88–97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23857-4_12
Chen, Q., Abdelwahed, S.: A model-based approach to self-protection in SCADA systems. Presented at the 9th International Workshop on Feedback Computing (Feedback Computing 2014) (2014). https://www.usenix.org/conference/feedbackcomputing14/workshop-program/presentation/chen. Accessed 29 Mar 2021
Soupionis, Y., Benoist, T.: Cyber attacks in power grid ICT systems leading to financial disturbance. In: Panayiotou, C.G.G., Ellinas, G., Kyriakides, E., Polycarpou, M.M.M. (eds.) CRITIS 2014. LNCS, vol. 8985, pp. 256–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31664-2_26
Demertzis, K., Rantos, K., Drosatos, G.: A dynamic intelligent policies analysis mechanism for personal data processing in the IoT ecosystem. Big Data Cogn. Comput. 4(2), 9 (2020). https://doi.org/10.3390/bdcc4020009
Sikeridis, D., Bidram, A., Devetsikiotis, M., Reno, M.J.: A blockchain-based mechanism for secure data exchange in smart grid protection systems. In: 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2020). https://doi.org/10.1109/CCNC46108.2020.9045368
Llopis, S., et al.: A comparative analysis of visualisation techniques to achieve cyber situational awareness in the military. In: 2018 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1–7 (2018). https://doi.org/10.1109/ICMCIS.2018.8398693
Çınar, C., Alkan, M., Dörterler, M., Doğru, İ.A.: A study on advanced persistent threat. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 116–121 (2018). https://doi.org/10.1109/UBMK.2018.8566348
Azzedin, F., Suwad, H., Alyafeai, Z.: Counter measuring zero day attacks: asset-based approach. In: 2017 International Conference on High Performance Computing Simulation (HPCS), pp. 854–857 (2017). https://doi.org/10.1109/HPCS.2017.129
Demertzis, K., Iliadis, L., Anezakis, V.-D.: A dynamic ensemble learning framework for data stream analysis and real-time threat detection. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 669–681. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_66
Jirsik, T., Cermak, M., Tovarnak, D., Celeda, P.: Toward stream-based IP flow analysis. IEEE Commun. Mag. 55(7), 70–76 (2017). https://doi.org/10.1109/MCOM.2017.1600972
Čermák, M., Tovarňák, D., Laštovička, M., Čeleda, P.: A performance benchmark for NetFlow data analysis on distributed stream processing systems. In: NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 919–924 (2016). https://doi.org/10.1109/NOMS.2016.7502926
CESNET/ipfixcol2: CESNET (2021)
Apache Kafka: Apache Kafka. https://kafka.apache.org/. Accessed 29 Mar 2021
Apache SparkTM - Unified Analytics Engine for Big Data. http://spark.apache.org/. Accessed 29 Mar 2021
Free and Open Search: The Creators of Elasticsearch. ELK & Kibana | Elastic. https://www.elastic.co/. Accessed 29 Mar 2021
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)
Jin, H., Song, Q., Hu, X.: Auto-Keras: an efficient neural architecture search system. arXiv:1806.10282 Cs Stat (2019). Accessed 29 Mar 2021
Amazon Kinesis - Process & Analyze Streaming Data - Amazon Web Services. Amazon Web Services, Inc. https://aws.amazon.com/kinesis/. Accessed 29 Mar 2021
Lindell, Y.: Secure multiparty computation (MPC), 300 (2020). http://eprint.iacr.org/2020/300. Accessed 29 Mar 2021
Korkmaz, C., Kocas, H.E., Uysal, A., Masry, A., Ozkasap, O., Akgun, B.: Chain FL: decentralized federated machine learning via blockchain. In: 2020 Second International Conference on Blockchain Computing and Applications (BCCA), pp. 140–146 (2020). https://doi.org/10.1109/BCCA50787.2020.9274451
Demertzis, K., Iliadis, L., Anezakis, V.: MOLESTRA: a multi-task learning approach for real-time big data analytics. In: 2018 Innovations in Intelligent Systems and Applications (INISTA), pp. 1–8 (2018). https://doi.org/10.1109/INISTA.2018.8466306
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1
luisquintanilla: Differential privacy in machine learning (preview) - Azure Machine Learning. https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy. Accessed 29 Mar 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Demertzis, K., Iliadis, L., Pimenidis, E., Tziritas, N., Koziri, M., Kikiras, P. (2021). Blockchained Adaptive Federated Auto MetaLearning BigData and DevOps CyberSecurity Architecture in Industry 4.0. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds) Proceedings of the 22nd Engineering Applications of Neural Networks Conference. EANN 2021. Proceedings of the International Neural Networks Society, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-80568-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-80568-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80567-8
Online ISBN: 978-3-030-80568-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)