Skip to main content

Improving the Diagnosis of Breast Cancer by Combining Visual and Semantic Feature Descriptors

  • Conference paper
  • First Online:
Proceedings of the 22nd Engineering Applications of Neural Networks Conference (EANN 2021)

Abstract

Mammography still remains the foremost effective procedure for early diagnosis of breast cancer. To compensate with the increasing number of readings that radiologists have to undertake, Computer-aided Diagnosis (CAD) systems have become a significant assistance tool, that are used to help identify abnormal and normal regions of interest in mammograms faster and more effectively than human readers. In this paper, we propose a new approach for breast cancer identification of all type of lesions in digital mammograms by combining low- and high-level mammogram descriptors in a compact quaternionic form. Our proposed method has two major stages. Initially, a feature extraction process is proposed to extract low-level visual descriptors of Region of Suspicion (ROS), that utilizes two dimensional discrete transforms based on Angular Radial Transform (ART), Shapelets as well as textural representations based on the Haralick features. To further improve our method’s performance, the semantic information of the mammogram given by the radiologists is encoded in a 16-bit length word high-level feature vector. The features are stored in a quaternion and fused using the L2 norm prior to their presentation to the classification module. For the classification task, each ROS is recognized using a trained radial basis function neural network. The proposed method is evaluated on regions taken from the DDSM database. The proposed feature set achieves a mean accuracy of 94.22% (±1.594) and AUC = 0.9578 that is 33% higher than using only visual descriptors, showing that semantic information can improve the diagnosis when combined with standard visual features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Global Cancer Observatory, Breast Cancer. World Heal. Organ. 876, 2018–2019 (2018)

    Google Scholar 

  2. National Cancer Institute, Cancer of the breast (female) - cancer stat facts, p. 1. SEER (2020)

    Google Scholar 

  3. World Health Organization. WHO Position Paper on Mammography Screening (2014). http://apps.who.int/iris/bitstream/10665/137339/1/9789241507936_eng.pdf?ua=1

  4. Nickson, C., Mason, K.E., English, D.R., Kavanagh, A.M.: Mammographic screening and breast cancer mortality: a case-control study and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 1479–1488 (2012). https://doi.org/10.1158/1055-9965.epi-12-0468

    Article  Google Scholar 

  5. Broeders, M., et al.: The Impact of mammographic screening on breast cancer mortality in Europe: a review of observational studies. J. Med. Screen. 19, 14–25 (2012). https://doi.org/10.1258/jms.2012.012078

    Article  Google Scholar 

  6. Katzen, J., Dodelzon, K.: A review of computer aided detection in mammography. Clin. Imaging 52, 305–309 (2018). https://doi.org/10.1016/j.clinimag.2018.08.014

    Article  Google Scholar 

  7. Keen, J.D., Keen, J.M., Keen, J.E.: Utilization of computer-aided detection for digital screening mammography in the United States, 2008 to 2016. J. Am. Coll. Radiol. 15, 44–48 (2018). https://doi.org/10.1016/j.jacr.2017.08.033

    Article  Google Scholar 

  8. Kaushal, C., Bhat, S., Koundal, D., Singla, A.: Recent trends in Computer Assisted Diagnosis (CAD) system for breast cancer diagnosis using histopathological images. IRBM 40, 211–227 (2019). https://doi.org/10.1016/j.irbm.2019.06.001

    Article  Google Scholar 

  9. Le, E.P.V., Wang, Y., Huang, Y., Hickman, S., Gilbert, F.J.: Artificial intelligence in breast imaging. Clin. Radiol. 74, 357–366 (2019). https://doi.org/10.1016/j.crad.2019.02.006

    Article  Google Scholar 

  10. Kim, H.-E., et al.: Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit. Health. 2, 138–148 (2020). https://doi.org/10.1016/s2589-7500(20)30003-0

    Article  Google Scholar 

  11. Yanase, J., Triantaphyllou, E.: A systematic survey of computer-aided diagnosis in medicine: past and present developments. Expert Syst. Appl. 138, 112821 (2019). https://doi.org/10.1016/j.eswa.2019.112821

    Article  Google Scholar 

  12. Apostolopoulos, G., Koutras, A., Christoyianni, I., Dermatas, E.: Computer aided diagnosis of mammographic tissue using shapelets in quaternionic representation. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IP, vol. 57, pp. 222–227. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32703-7_45

    Chapter  Google Scholar 

  13. Apostolopoulos, G., Koutras, A., Christoyianni, I., Dermatas, E.: A new method for breast cancer identification using multi-modal features in quaternionic form. In: 2017 25th European Signal Processing Conference (EUSIPCO). IEEE (2017). https://doi.org/10.23919/eusipco.2017.8081168

  14. Christoyianni, I., Koutras, A., Dermatas, E., Kokkinakis, G.: Computer aided diagnosis of breast cancer in digitized mammograms. Comput. Med. Imaging Graph. 26, 309–319 (2002). https://doi.org/10.1016/s0895-6111(02)00031-9

    Article  Google Scholar 

  15. Khan, S., Hussain, M., Aboalsamh, H., Mathkour, H., Bebis, G., Zakariah, M.: Optimized gabor features for mass classification in mammography. Appl. Soft Comput. 44, 267–280 (2016). https://doi.org/10.1016/j.asoc.2016.04.012

    Article  Google Scholar 

  16. Refregier, A.: Shapelets -- I. A method for image analysis. Mon. Not. R. Astron. Soc. 338(1), 35–47 (2003). https://doi.org/10.1046/j.1365-8711.2003.05901.x

    Article  Google Scholar 

  17. Bober, M.: MPEG-7 visual shape descriptors. IEEE Trans. Circ. Syst. Video Technol. 11, 716–719 (2001). https://doi.org/10.1109/76.927426

    Article  Google Scholar 

  18. MPEG-7: Mpeg-7 Visual part of experimentation Model Version 9.0. In ISO/IEC JTC1/SC29/WG11/N3914, 55th Mpeg Meeting, Pisa, January 2001

    Google Scholar 

  19. Kim, H.-K., Kim, J.-D.: Region-based shape descriptor invariant to rotation, scale and translation. Signal Process. Image Commun. 16, 87–93 (2000). https://doi.org/10.1016/s0923-5965(00)00018-7

    Article  Google Scholar 

  20. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  21. Soh, L.-K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37, 780–795 (1999). https://doi.org/10.1109/36.752194

    Article  Google Scholar 

  22. Slema, S., et al.: A radial basis function neural network model reference adaptive controller for nonlinear systems. In: 2018 15th International Multi-Conference on Systems, Signals and Devices (SSD), Hammamet, pp. 958–964. IEEE (2018). https://doi.org/10.1109/SSD.2018.8570538

  23. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991). https://doi.org/10.1162/neco.1991.3.2.246

    Article  Google Scholar 

  24. Orr, M.J.L.: Regularization in the selection of radial basis function centers. Neural Comput. 7, 606–623 (1995). https://doi.org/10.1162/neco.1995.7.3.606

    Article  Google Scholar 

  25. Heath, M., et al.: The digital database for screening mammography. In: Yaffe, M.J. (ed.) Proceedings of the Fifth International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2001)

    Google Scholar 

  26. Heath, M., et al.: Current status of the digital database for screening mammography. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds.) Digital Mammography: Nijmegen, 1998, pp. 457–460. Springer Netherlands, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5318-8_75

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Koutras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apostolopoulos, G., Koutras, A., Anyfantis, D., Christoyianni, I., Dermatas, E. (2021). Improving the Diagnosis of Breast Cancer by Combining Visual and Semantic Feature Descriptors. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds) Proceedings of the 22nd Engineering Applications of Neural Networks Conference. EANN 2021. Proceedings of the International Neural Networks Society, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-80568-5_7

Download citation

Publish with us

Policies and ethics