Skip to main content

Sequence-Based Word Embeddings for Effective Text Classification

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12801))

Abstract

In this work we present DiVe (Distance-based Vector Embedding), a new word embedding technique based on the Logistic Markov Embedding (LME). First, we generalize LME to consider different distance metrics and address existing scalability issues using negative sampling, thus making DiVe scalable for large datasets. In order to evaluate the quality of word embeddings produced by DiVe, we used them to train standard machine learning classifiers, with the goal of performing different Natural Language Processing (NLP) tasks. Our experiments demonstrated that DiVe is able to outperform existing (more complex) machine learning approaches, while preserving simplicity and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/DiVeWord/DiVeWordEmbedding.

  2. 2.

    https://github.com/DiVeWord/DiVeWordEmbedding.

  3. 3.

    http://scikit-learn.org/stable/index.html.

  4. 4.

    https://allennlp.org/elmo.

  5. 5.

    https://github.com/google-research/bert.

References

  1. Brazinskas, A., Havrylov, S., Titov, I.: Embedding words as distributions with a bayesian skip-gram model. In: COLING (2018)

    Google Scholar 

  2. Cheng, J., Druzdzel, M.J.: AIS-BN: an adaptive importance sampling algorithm for evidential reasoning in large bayesian networks. J. Artif. Intell. Res. 13, 155–188 (2000)

    Article  MathSciNet  Google Scholar 

  3. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  4. Figueiredo, F., Ribeiro, B., Almeida, J.M., Faloutsos, C.: Tribeflow: Mining & predicting user trajectories (2015)

    Google Scholar 

  5. Globerson, A., Chechik, G., Pereira, F., Tishby, N.: Euclidean embedding of co-occurrence data. J. Mach. Learn. Res. 8 (2007)

    Google Scholar 

  6. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fasttext.zip: compressing text classification models. CoRR abs/1612.03651 (2016). http://arxiv.org/abs/1612.03651

  7. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to NLP, Computational Linguistics, and Speech Recognition (2009)

    Google Scholar 

  8. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: The 49th Annual Meeting of the Association for Computational Linguistics (2011)

    Google Scholar 

  9. McCann, B., Bradbury, J., Xiong, C., Socher, R.: Learned in translation: contextualized word vectors. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013)

    Google Scholar 

  11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  12. Moore, J.L., Joachims, T., Turnbull, D.: Taste space versus the world: an embedding analysis of listening habits and geography. In: ISMIR (2014)

    Google Scholar 

  13. Okita, T.: Neural probabilistic language model for system combination. In: COLING (2012)

    Google Scholar 

  14. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)

    Google Scholar 

  15. Peters, M.E., et al.: Deep contextualized word representations. In: NAACL-HLT (2018)

    Google Scholar 

  16. Xia, Y., Cambria, E., Hussain, A., Zhao, H.: Word polarity disambiguation using bayesian model and opinion-level features. Cognit. Comput. 7(3), 369–380 (2014). https://doi.org/10.1007/s12559-014-9298-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Guilherme Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guilherme Gomes, B., Murai, F., Goussevskaia, O., Couto da Silva, A.P. (2021). Sequence-Based Word Embeddings for Effective Text Classification. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds) Natural Language Processing and Information Systems. NLDB 2021. Lecture Notes in Computer Science(), vol 12801. Springer, Cham. https://doi.org/10.1007/978-3-030-80599-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80599-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80598-2

  • Online ISBN: 978-3-030-80599-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics