Skip to main content

Semantic Text Segment Classification of Structured Technical Content

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2021)

Abstract

Semantic tagging in technical documentation is an important but error-prone process, with the objective to produce highly structured content for automated processing and standardized information delivery. Benefits thereof are consistent and didactically optimized documents, supported by professional and automatic styling for multiple target media. Using machine learning to automate the validation of the tagging process is a novel approach, for which a new, high-quality dataset is provided in ready-to-use training, validation and test sets. In a series of experiments, we classified ten different semantic text segment types using both traditional and deep learning models. The experiments show partial success, with a high accuracy but relatively low macro-average performance. This can be attributed to a mix of a strong class imbalance, and high semantic and linguistic similarity among certain text types. By creating a set of context features, the model performances increased significantly. Although the data was collected to serve a specific use case, further valuable research can be performed in the areas of document engineering, class imbalance reduction, and semantic text classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://help.sap.com/viewer/index.

  2. 2.

    https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita.

  3. 3.

    https://github.com/juhoUnibw/semSegClass.

  4. 4.

    https://huggingface.co/transformers/model_doc/bert.html#tfbertforsequenceclassification.

References

  1. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. ACL, Minneapolis, June 2019. https://doi.org/10.18653/v1/N19-1423

  2. Dhiman, A., Toshniwal, D.: An enhanced text classification to explore health based indian government policy tweets. CoRR abs/2007.06511 (2020)

    Google Scholar 

  3. Di Iorio, A., Peroni, S., Poggi, F., Vitali, F.: A first approach to the automatic recognition of structural patterns in XML documents. In: Concolato, C., Schmitz, P. (eds.) ACM Symposium on Document Engineering, DocEng 2012, Paris, France, 4–7 September 2012, pp. 85–94. ACM (2012). https://doi.org/10.1145/2361354.2361374

  4. Drewer, P., Ziegler, W.: Technische Dokumentation: Übersetzungsgerechte Texterstellung und Content-Management, pp. 25–27. Vogel Business Media (2011)

    Google Scholar 

  5. Fei, G., Liu, B.: Social media text classification under negative covariate shift. In: Màrquez, L., Callison-Burch, C., Su, J., Pighin, D., Marton, Y. (eds.) Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, 17–21 September 2015, pp. 2347–2356. ACL (2015). https://doi.org/10.18653/v1/d15-1282

  6. González-Carvajal, S., Garrido-Merchán, E.C.: Comparing BERT against traditional machine learning text classification. CoRR abs/2005.13012 (2020)

    Google Scholar 

  7. Gräbner, D., Zanker, M., Fliedl, G., Fuchs, M.: Classification of Customer Reviews based on Sentiment Analysis. In: Fuchs, M., Ricci, F., Cantoni, L. (eds.) ENTER 2012, pp. 460–470. Springer, Vienna (2012). https://doi.org/10.1007/978-3-7091-1142-0_40

    Chapter  Google Scholar 

  8. Lee, J.S., Hsiang, J.: Patent classification by fine-tuning BERT language model. World Patent Inf. 61, 101965 (2020). https://doi.org/10.1016/j.wpi.2020.101965

    Article  Google Scholar 

  9. Lund, M.: Duplicate detection and text classification on simplified technical English. Dissertation, Linköping University (2019). http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158714

  10. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  11. Nicholls, C., Song, F.: Improving sentiment analysis with part-of-speech weighting. In: 2009 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1592–1597 (2009). https://doi.org/10.1109/ICMLC.2009.5212278

  12. Oevermann, J.: Reconstructing semantic structures in technical documentation with vector space classification. In: Martin, M., Cuquet, M., Folmer, E. (eds.) SEMANTiCS 2016, Leipzig, Germany, 12–15 September 2016. CEUR Workshop Proceedings, vol. 1695. CEUR-WS.org (2016)

    Google Scholar 

  13. Oevermann, J., Ziegler, W.: Automated classification of content components in technical communication. Comput. Intell. 34(1), 30–48 (2018)

    Article  MathSciNet  Google Scholar 

  14. Prakash, A.: Fine-tuning BERT model using PyTorch, December 2019. https://medium.com/@prakashakshay90/f34148d58a37

  15. Pratama, B.Y., Sarno, R.: Personality classification based on Twitter text using naive bayes, KNN and SVM. In: 2015 International Conference on Data and Software Engineering (ICoDSE), pp. 170–174 (2015). https://doi.org/10.1109/ICODSE.2015.7436992

  16. Raj, B.S.: Understanding BERT: is it a game changer in NLP? (2019). https://towardsdatascience.com/7cca943cf3ad

  17. Stewart, S., Burns, D. (eds.): W3C Recommendation, chap. WebDriver. W3C, August 2020. https://www.w3.org/TR/webdriver/

  18. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, p. 306. Addison-Wesley Longman Publishing Co., Inc., USA (2005)

    Google Scholar 

  19. Vig, J.: Deconstructing BERT, Part 2: visualizing the inner workings of attention, January 2019. https://towardsdatascience.com/60a16d86b5c1

  20. Wang, W., Liu, M., Zhang, Y., Xiang, J., Mao, R.: Financial numeral classification model based on BERT. In: Kato, M.P., Liu, Y., Kando, N., Clarke, C.L.A. (eds.) NTCIR 2019. LNCS, vol. 11966, pp. 193–204. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36805-0_15

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bavarian Research Institute for Digital Transformation and the European Research Council (#740516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Höllig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Höllig, J., Dufter, P., Geierhos, M., Ziegler, W., Schütze, H. (2021). Semantic Text Segment Classification of Structured Technical Content. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds) Natural Language Processing and Information Systems. NLDB 2021. Lecture Notes in Computer Science(), vol 12801. Springer, Cham. https://doi.org/10.1007/978-3-030-80599-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80599-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80598-2

  • Online ISBN: 978-3-030-80599-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics