Abstract
One of the main challenges in the development of argument mining tools is the availability of annotated data of adequate size and quality. However, generating data sets using experts is expensive from both organizational and financial perspectives, which is also the case for tools developed for identifying argumentative content in informal social media texts like tweets. As a solution, we propose using crowdsourcing as a fast, scalable, and cost-effective alternative to linguistic experts. To investigate the crowd workers’ performance, we compare crowd and expert annotations of argumentative content, dividing it into claim and evidence, for 300 German tweet pairs from the domain of climate change. As being the first work comparing crowd and expert annotations for argument mining in tweets, we show that crowd workers can achieve similar results to experts when annotating claims; however, identifying evidence is a more challenging task both for naive crowds and experts. Further, we train supervised classification and sequence labeling models for claim and evidence detection, showing that crowdsourced data delivers promising results when comparing to experts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Addawood, A., Bashir, M.: What is your evidence? A study of controversial topics on social media. In: Proceedings of the Third Workshop on Argument Mining (ArgMining2016), August 2016, pp. 1–11. Association for Computational Linguistics, Berlin, Germany (2016). https://doi.org/10.18653/v1/W16-2801
Bosc, T., Cabrio, E., Villata, S.: DART: a dataset of arguments and their relations on Twitter. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), May 2016, pp. 1258–1263. European Language Resources Association (ELRA), Portorož, Slovenia (2016)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), June 2019, pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423
Goudas, T., Louizos, C., Petasis, G., Karkaletsis, V.: Argument extraction from news, blogs, and social media. In: Likas, A., Blekas, K., Kalles, D. (eds.) Artificial Intelligence: Methods and Applications, pp. 287–299. Springer International Publishing, Cham (2014)
Krippendorff, K.: Content Analysis: An Introduction to Its Methodology, Sage publications, Thousand Oaks (1980)
Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)
Lavee, T., et al.: Crowd-sourcing annotation of complex NLU tasks: a case study of argumentative content annotation. In: Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP, November 2019, pp. 29–38. Association for Computational Linguistics, Hong Kong (2019). https://doi.org/10.18653/v1/D19-5905
Lin, C.Y.: ROUGE: A package for automatic evaluation of summaries, pp. 74–81 (July 2004)
Lindahl, A.: Annotating argumentation in Swedish social media. In: Proceedings of the 7th Workshop on Argument Mining, December 2020, pp. 100–105. Association for Computational Linguistics, Online (2020)
Miller, T., Sukhareva, M., Gurevych, I.: A streamlined method for sourcing discourse-level argumentation annotations from the crowd. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), June 2019, pp. 1790–1796. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1177
Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: a survey. Int. J. Cogn. Inform. Nat. Intell. 7(1), 1–31 (2013). https://doi.org/10.4018/jcini.2013010101
Reisert, P., Vallejo, G., Inoue, N., Gurevych, I., Inui, K.: An annotation protocol for collecting user-generated counter-arguments using crowdsourcing. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) Artificial Intelligence in Education, pp. 232–236. Springer International Publishing, Cham (2019)
Schaefer, R., Stede, M.: Annotation and detection of arguments in tweets. In: Proceedings of the 7th Workshop on Argument Mining, December 2020, pp. 53–58. Association for Computational Linguistics, Online (2020)
Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), October 2014, pp. 46–56. Association for Computational Linguistics, Doha, Qatar (2014). https://doi.org/10.3115/v1/D14-1006
Stede, M., Schneider, J.: Argumentation Mining, Synthesis Lectures in Human Language Technology, vol. 40. Morgan & Claypool (2018)
Toledo-Ronen, O., Orbach, M., Bilu, Y., Spector, A., Slonim, N.: Multilingual argument mining: Datasets and analysis. In: Findings of the Association for Computational Linguistics: EMNLP 2020, November 2020, pp. 303–317. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.29
Šnajder, J.: Social media argumentation mining: The quest for deliberateness in raucousness (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Iskender, N., Schaefer, R., Polzehl, T., Möller, S. (2021). Argument Mining in Tweets: Comparing Crowd and Expert Annotations for Automated Claim and Evidence Detection. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds) Natural Language Processing and Information Systems. NLDB 2021. Lecture Notes in Computer Science(), vol 12801. Springer, Cham. https://doi.org/10.1007/978-3-030-80599-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-80599-9_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80598-2
Online ISBN: 978-3-030-80599-9
eBook Packages: Computer ScienceComputer Science (R0)