Skip to main content

On the Explainability of Automatic Predictions of Mental Disorders from Social Media Data

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12801))

Abstract

Mental disorders are an important public health issue, and computational methods have the potential to aid with detection of risky behaviors online, through extracting information from social media in order to retrieve users at risk of developing mental disorders. At the same time, state-of-the-art machine learning models are based on neural networks, which are notoriously difficult to interpret. Exploring the explainability of neural network models for mental disorder detection can make their decisions more reliable and easier to trust, and can help identify specific patterns in the data which are indicative of mental disorders. We aim to provide interpretations for the manifestations of mental disorder symptoms in language, as well as explain the decisions of deep learning models from multiple perspectives, going beyond classical techniques such as attention analysis, and including activation patterns in hidden layers, and error analysis focused on particular features such as the emotions and topics found in texts, from a technical as well as psycho-linguistic perspective, for different social media datasets (sourced from Reddit and Twitter), annotated for four mental disorders: depression, anorexia, PTSD and self-harm tendencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://early.irlab.org/.

  2. 2.

    https://github.com/ananana/mental-disorders.

References

  1. Abd Yusof, N.F., Lin, C., Guerin, F.: Analysing the causes of depressed mood from depression vulnerable individuals. In: DDDSM-2017, pp. 9–17 (2017)

    Google Scholar 

  2. Amini, H., Kosseim, L.: Towards explainability in using deep learning for the detection of anorexia in social media. NLDB 12089, 225

    Google Scholar 

  3. Coppersmith, G., Dredze, M., Harman, C.: Quantifying mental health signals in twitter. CLPsych 2014, 51–60 (2014)

    Google Scholar 

  4. Coppersmith, G., Dredze, M., Harman, C., Hollingshead, K., Mitchell, M.: CLPsych 2015 shared task: depression and PTSD on twitter. CLPsych 2015, 31–39 (2015)

    Google Scholar 

  5. De Choudhury, M., Counts, S., Horvitz, E.J., Hoff, A.: Characterizing and predicting postpartum depression from shared facebook data. In: ACM on Computer Supported Cooperative Work and Social Computing, pp. 626–638 (2014)

    Google Scholar 

  6. De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: AAAI (2013)

    Google Scholar 

  7. Eichstaedt, J.C., et al.: Facebook language predicts depression in medical records. Proc. of the Natl. Acad. Sci. 115(44), 11203–11208 (2018)

    Article  Google Scholar 

  8. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: An overview of interpretability of machine learning. In: IEEE DSAA, pp. 80–89. IEEE (2018)

    Google Scholar 

  9. Grigorenko, E.L., Sternberg, R.J.: Thinking Styles. In: Saklofske, D.H., Zeidner, M. (eds.) International Handbook of Personality and Intelligence. Perspectives on Individual Differences, Springer, Boston (1995). https://doi.org/10.1007/978-1-4757-5571-8_11

    Chapter  Google Scholar 

  10. Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923 (2017)

  11. Kaufman, J., Charney, D.: Comorbidity of mood and anxiety disorders. Depress. Anxiety 12(S1), 69–76 (2000)

    Article  Google Scholar 

  12. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk: early risk prediction on the internet. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 343–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98932-7_30

  13. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk 2019 early risk prediction on the internet. In: Crestani, F. (ed.) CLEF 2019. LNCS, vol. 11696, pp. 340–357. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_27

    Chapter  Google Scholar 

  14. Losada, D.E., Crestani, F., Parapar, J.: eRisk 2020: self-harm and depression challenges. In: Jose, J.M. (ed.) ECIR 2020. LNCS, vol. 12036, pp. 557–563. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_72

    Chapter  Google Scholar 

  15. Mehltretter, J., et al.: Analysis of features selected by a deep learning model for differential treatment selection in depression. Front. Artif. Intell. 2, 31 (2020)

    Google Scholar 

  16. Mitchell, M., Hollingshead, K., Coppersmith, G.: Quantifying the language of schizophrenia in social media. CLPsych 2015, 11–20 (2015)

    Google Scholar 

  17. Mohammad, S.M., Turney, P.D.: NRC emotion lexicon. National Research Council, Canada 2 (2013)

    Google Scholar 

  18. Mosteller, F., Wallace, D.L.: Inference in an authorship problem: a comparative study of discrimination methods applied to the authorship of the disputed federalist papers. J. Am. Stat. Assoc. 58(302), 275–309 (1963)

    MATH  Google Scholar 

  19. O’dea, B., Wan, S., Batterham, P.J., Calear, A.L., Paris, C., Christensen, H.: Detecting suicidality on Twitter. Internet Interventions 2(2), 183–188 (2015)

    Article  Google Scholar 

  20. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates 71(2001), 2001 (2001)

    Google Scholar 

  21. Plutchik, R.: Emotions: a general psychoevolutionary theory. Approaches Emot. 1984, 197–219 (1984)

    Google Scholar 

  22. Resnik, P., Garron, A., Resnik, R.: Using topic modeling to improve prediction of neuroticism and depression in college students. In: EMNLP, pp. 1348–1353 (2013)

    Google Scholar 

  23. Sadeque, F., Xu, D., Bethard, S.: UArizona at the CLEF eRisk 2017 pilot task: linear and recurrent models for early depression detection. In: CLEF 2017 Labs and Workshops, Notebook Papers. CEUR Workshop Proceedings. CEUR-WS.org., vol. 1866. NIH Public Access (2017)

    Google Scholar 

  24. Schwartz, H.A., et al.: Towards assessing changes in degree of depression through facebook. In: CLPsych, pp. 118–125 (2014)

    Google Scholar 

  25. Serrano, S., Smith, N.A.: Is attention interpretable? In: ACL, pp. 2931–2951 (2019)

    Google Scholar 

  26. Shen, G., et al.: Depression detection via harvesting social media: a multimodal dictionary learning solution. In: IJCAI, pp. 3838–3844 (2017)

    Google Scholar 

  27. Shen, J.H., Rudzicz, F.: Detecting anxiety through reddit. CLPsych 2017, 58–65 (2017)

    Google Scholar 

  28. Trotzek, M., Koitka, S., Friedrich, C.M.: Linguistic metadata augmented classifiers at the CLEF 2017 task for early detection of depression. In: CLEF 2017 Labs and Workshops, Notebook Papers. CEUR Workshop Proceedings. CEUR-WS.org., vol. 1866 (2017)

    Google Scholar 

  29. Trotzek, M., Koitka, S., Friedrich, C.M.: Word embeddings and linguistic metadata at the CLEF 2018 tasks for early detection of depression and anorexia. In: CLEF 2018 Labs and Workshops, Notebook Papers. CEUR Workshop Proceedings.CEUR-WS.org., vol. 2125 (2018)

    Google Scholar 

  30. Uban, A.S., Rosso, P.: Deep learning architectures and strategies for early detection of self-harm and depression level prediction. In: CEUR Workshop Proceedings, vol. 2696, pp. 1–12 (2020)

    Google Scholar 

  31. Wang, Y.T., Huang, H.H., Chen, H.H.: A neural network approach to early risk detection of depression and anorexia on social media text. In: CLEF 2018 Labs and Workshops, Notebook Papers. CEUR Workshop Proceedings.CEUR-WS.org., vol. 2125 (2018)

    Google Scholar 

  32. Wiegreffe, S., Pinter, Y.: Attention is not not explanation. In: EMNLP-IJCNLP, pp. 11–20 (2019)

    Google Scholar 

  33. World Health Organization, W.: Depression: a global crisis. world mental health day, october 10 2012. World Federation for Mental Health, Occoquan, Va, USA (2012)

    Google Scholar 

  34. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. NAACL-HLT 2016, 1480–1489 (2016)

    Google Scholar 

  35. Yazdavar, A.H., et al.: Semi-supervised approach to monitoring clinical depressive symptoms in social media. In: IEEE/ACM in Social Networks Analysis and Mining, pp. 1191–1198 (2017)

    Google Scholar 

  36. Zucco, C., Liang, H., Di Fatta, G., Cannataro, M.: Explainable sentiment analysis with applications in medicine. In: IEEE BIBM, pp. 1740–1747. IEEE (2018)

    Google Scholar 

Download references

Acknowledgement

The authors thank the EU-FEDER Comunitat Valenciana 2014–2020 grant IDIFEDER/2018/025. The work of Paolo Rosso was in the framework of the research project PROMETEO/2019/121 (DeepPattern) by the Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sabina Uban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uban, A.S., Chulvi, B., Rosso, P. (2021). On the Explainability of Automatic Predictions of Mental Disorders from Social Media Data. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds) Natural Language Processing and Information Systems. NLDB 2021. Lecture Notes in Computer Science(), vol 12801. Springer, Cham. https://doi.org/10.1007/978-3-030-80599-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80599-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80598-2

  • Online ISBN: 978-3-030-80599-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics