Skip to main content

Overcoming the Knowledge Bottleneck Using Lifelong Learning by Social Agents

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12801))

  • 1851 Accesses

Abstract

In this position paper we argue that the best way to overcome the notorious knowledge bottleneck in AI is using lifelong learning by social intelligent agents. Keys to this capability are deep language understanding, dialog interaction, sufficiently broad-coverage and fine-grain knowledge bases to bootstrap the learning process, and the agent’s operation within a comprehensive cognitive architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McShane, M., Nirenburg, S.: Linguistics for the Age of AI, p. 445. MIT Press, Cambridge (2021). https://direct.mit.edu/books/book/5042/Linguistics-for-the-Age-of-AI

  2. Nirenburg, S., McShane, M., English, J.: Content-centric computational cognitive modeling. Adv. Cogn. Syst. (2020)

    Google Scholar 

  3. English, J., Nirenburg, S.: OntoAgent: implementing content-centric cognitive models. In: Proceedings of the Annual Conference on Advances in Cognitive Systems (2020)

    Google Scholar 

  4. McShane, B.: Understanding of complex and creative language use by artificial intelligent agents. Italian J. Comput. Linguist. (submitted)

    Google Scholar 

  5. English, J., Nirenburg, S.: Ontology learning from text using automatic ontological-semantic text annotation and the Web as the corpus. In: Papers from the AAAI 2007 Spring Symposium on Machine Reading (2007)

    Google Scholar 

  6. Nirenburg, S., Oates, T., English, J.: Learning by reading by learning to read. In: Proceedings of the International Conference on Semantic Computing (2007)

    Google Scholar 

  7. Nirenburg, S., Wood, P.: Toward human-style learning in robots. In: AAAI Fall Symposium on Natural Communication with Robots (2017)

    Google Scholar 

  8. Nirenburg, S., McShane, M., Wood, P., Scassellati, B., Magnin, O., Roncone, A.: Robots learning through language communication with users. In: Proceedings of NLDB 2018 (2018)

    Google Scholar 

  9. McShane, M., Nirenburg, S., English, J.: Multi-stage language understanding and actionability. Adv. Cogn. Syst. 6, 119–138 (2018)

    Google Scholar 

  10. Nirenburg, S., English, J., McShane, M.: Artificial intelligent agents go to school. In: 34th International Workshop on Qualitative Reasoning (submitted)

    Google Scholar 

  11. Lieto, A., Lebiere, C., Oltramari, A.: The knowledge level in cognitive architectures: Current limitations and possible developments. Cogn. Syst. Res. 48, 39–55 (2018)

    Article  Google Scholar 

  12. Langley, P., Laird, J., Rogers, S.: Cognitive architectures: research issues and challenges. Cogn. Syst. Res. 10, 141–160 (2009)

    Article  Google Scholar 

  13. Scheutz, M., Schermerhorn, P., Kramer, J., Anderson, D.: First steps toward natural human-like HRI. Auton. Robot. 22, 411–423 (2007)

    Article  Google Scholar 

  14. Forbus, K., Klenk, M., Hinrichs, T.: Companion cognitive systems: design goals and lessons learned so far. IEEE Intell. Syst. 24, 36–46 (2009)

    Article  Google Scholar 

  15. Choi, D., Langley, P.: Evolution of the ICARUS cognitive architecture. Cogn. Syst. Res. 48, 25–38 (2018)

    Article  Google Scholar 

  16. Mohan, S., Laird, J.: Learning goal-oriented hierarchical tasks from situated interactive instruction. In: Proceedings of AAAI, pp. 387–394 (2014)

    Google Scholar 

  17. Bridewell, W., Bello, P.: A theory of attention for cognitive systems. Adv. Cogn. Syst. 4 (2016)

    Google Scholar 

  18. Mohan, S., Mininger, A.H., Laird, J.E.: Towards an indexical model of situated language comprehension for real-world cognitive agents. Adv. Cogn. Syst. 3, 163–182 (2013)

    Google Scholar 

  19. Forbus, K., Riesbeck, C., Birnbaum, L., Livingston, K., Sharma, A., Ureel, L.: Integrating natural language, knowledge representation and reasoning, and analogical processing to learn by reading. In: Proceedings of AAAI 2007 (2007)

    Google Scholar 

  20. Forbus, K., Lockwood, K., Sharma, A.: Steps towards a 2nd generation learning by reading system. In: AAAI Spring Symposium on Learning by Reading (2009)

    Google Scholar 

  21. Allen, J., et al.: PLOW: a collaborative task learning agent. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI 2007) (2007)

    Google Scholar 

  22. Scheutz, M., Krause, E., Oosterveld, B., Frasca, T., Platt, R.: Spoken instruction-based one-shot object and action learning in a cognitive robotic architecture. In: Proceedings of AAMAS 2017 (2017)

    Google Scholar 

  23. Lindes, P., Laird, J.: Toward integrating cognitive linguistics and cognitive language processing. In: Proceedings of ICCM 2016 (2016)

    Google Scholar 

  24. McShane, M., Nirenburg, S., Jarrell, B.: Modeling decision-making biases. Biol.-Inspired Cogn. Architect. (BICA) J. 3, 39–50 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nirenburg, S., McShane, M., English, J. (2021). Overcoming the Knowledge Bottleneck Using Lifelong Learning by Social Agents. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds) Natural Language Processing and Information Systems. NLDB 2021. Lecture Notes in Computer Science(), vol 12801. Springer, Cham. https://doi.org/10.1007/978-3-030-80599-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80599-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80598-2

  • Online ISBN: 978-3-030-80599-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics