Skip to main content

Developments in the Application of Nano Materials for Photovoltaic Solar Cell Design, Based on Industry 4.0 Integration Scheme

  • Conference paper
  • First Online:
Advances in Artificial Intelligence, Software and Systems Engineering (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 271))

Included in the following conference series:

  • 1838 Accesses

Abstract

Nano materials now have vast relevance and application in product design, such as power generation systems. This paper focuses on ongoing research involving Nickel Oxide deposition on glass substrate for power generation in solar cells. Various technologies are being explored using diverse nano materials that have the potential of solar irradiation absorption. Likewise, multiple technologies for impregnating the materials to Indium Titanium Oxide (ITO) substrate yield results even though not yet to optimal expectation currently. In this context, the discussion is mainly on the latest technologies, materials, and conditions that influence the choice and technological approach adopted, based on industry 4.0 imperatives. The research is informed by core drivers such as evolving technology, affordability and domestication of solar cells that meet evolving power generation changes, using miniaturized and optimized power systems. The study relied on big data for some design considerations, which is very much in line with optimization systems applied in industry 4.0. Various options of choice for fabrication, characterization, and analysis explored are discussed herein, and this is a starting point as it provides insight to academia for further exploration of the latent potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parida, B., Iniyan, S., Goic, R.: A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011)

    Article  Google Scholar 

  2. Werner, J.H.: Second and third generation photovoltaics – dreams and reality. In: Kramer, B. (ed.) Advances in Solid State Physics, vol. 44, pp. 51–68. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39970-4_5

    Chapter  Google Scholar 

  3. Green, M.A.: Prospects for photovoltaic efficiency enhancement using low-dimensional structures. Nanotechnology 11(4), 401–405 (2000). https://doi.org/10.1088/0957-4484/11/4/342

    Article  Google Scholar 

  4. Frankl P, N.S.: Technology roadmap. Solar photovoltaic energy. OECD/IEA, Paris France (2010)

    Google Scholar 

  5. Taylor, R.A., et al.: Applicability of nanofluids in high flux solar collectors. J. Renew. Sustain. Energy 3, 23–104 (2011)

    Google Scholar 

  6. Kazmerski, L.L.: Solar photovoltaics R&D at the tipping point: a 2005 technology overview. Electron. Spectroscopy 150, 105–135 (2006)

    Article  Google Scholar 

  7. Nozik, A.J., Conibeer, G., Beard, M.C.: Advanced Concepts in Photovoltaics. Royal Society of Chemistry, Oxford (2014)

    Book  Google Scholar 

  8. Conibeer, G.: Proceedings 25th European Photovoltaic Solar Energy Conference, Valencia (2010)

    Google Scholar 

  9. Green, M.A.: “Third generation photovoltaics:” advanced Solar energy conversion. Phys. Today 57, 71–74 (2004)

    Google Scholar 

  10. Rojas, D., Beermann, J., Klein, S., Reindl, D.: Thermal performance testing of flat plate collectors. Sol. Energy 82, 746–757 (2011)

    Article  Google Scholar 

  11. Alferov, Zh.I.: Trends and perspectives of solar photovoltaic. Semiconductors 938–948 (2004)

    Google Scholar 

  12. Yamaguchi, M.: Japan programs on novel concepts in PV. Semiconductor 394–399 (2004)

    Google Scholar 

  13. Kempa, K., Naughton, M.J., Ren, Z.F., Herczynski, A., Kirpatrick, T.: Hot electron effect in nanoscopically thin photovoltaic junctions. Appl. Phys. Lett. 95, 1–3 (2009)

    Article  Google Scholar 

  14. Gradauskas, J., Širmulis, E., Ašmontas, S., Sužiedėlis, A., Dashevsky, Z., Kasiyan, V.: Peculiarities of high power infrared detection on narrow-Gap semiconductor p-n junctions. Acta Phys. Polonica 119, 237–240 (2011)

    Article  Google Scholar 

  15. Ukoba, O.K.: Fabrication of affordable and sustainable solar cells using NiO/TiO2 PN heterojunction. Int. J. Photoenergy 2018, 7 (2018)

    Article  Google Scholar 

  16. Ašmontas, S.: Photoelectric properties of nonuniform semiconductor under infrared laser radiation. In: Proceedings of the SPIE, pp. 18–27 (2001)

    Google Scholar 

  17. Chou, K.S., Huang, K.C., Lee, H.H.: Fabrication and sintering effect on the morphologies and conductivity of nano particle films by spin coating method. Nanotechnology 16, 779–784 (2005)

    Article  Google Scholar 

  18. Atwa, Y., Goldthorpe, I.A.: Metal-nanowire coated threads for conductive textiles. In: Proceeding of the IEEEE 14th International Conference on Nanotechnology Toronto on Canada, pp. 18–21 (2014)

    Google Scholar 

  19. Shamala, K.: Studies on tin oxide films prepare by electron beam evaporation and spray pyrolysis methods. Bull. Mater. Sci. 27, 295–301 (2004)

    Article  Google Scholar 

  20. Thiagarajan, S.: Facile methodology of sol gel synthesis for metal oxide nanostructures. In: Recent Application in Sol Gel Synthesis, pp. 1–17 (2017)

    Google Scholar 

  21. Park, J.J., Kim, K., Roy, M., Song, J.K., Park, S.M.: Characterization of SnO2 thin films grown by pulsed laser deposition under transverse magnetic field. Rapid Commun. Photosci. 4(3), 50–53 (2015). https://doi.org/10.5857/RCP.2015.4.3.50

    Article  Google Scholar 

  22. van Mol, A.M.B., Chae, Y., McDaniel, A.H., Allendorf, M.D.: Chemical vapor deposition of tin oxide: fundamentals and applications. Thin Solid Films 502(1–2), 72–78 (2006). https://doi.org/10.1016/j.tsf.2005.07.247

    Article  Google Scholar 

  23. Ponraj, J.S., Attolini, G., Bosi, M.: Review on atomic layer deposition and applications of oxide thin films. Crit. Rev. Solid State Mater. Sci. 38(3), 203–233 (2013). https://doi.org/10.1080/10408436.2012.736886

    Article  Google Scholar 

  24. Shamala, K.S., Murthy, L.C.S., Narasimha Rao, K.: Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis Methods. Bull. Mater. Sci. 27(3), 295–301 (2004). https://doi.org/10.1007/BF02708520

    Article  Google Scholar 

  25. Ukoba, K., Eloka-Eboka, A., Inambao, F.: Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew. Sustain. Energy Rev. 82(3), 2900–2915 (2018)

    Article  Google Scholar 

  26. Vuong, D.D., Sakai, G., Shimanoe, K., Yamazoe, N.: Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application. Sens. Actuators B: Chem. 103(1–2), 386–391 (2004). https://doi.org/10.1016/j.snb.2004.04.122

    Article  Google Scholar 

  27. Cavicchi, R.E., Walton, R.M., Aquino-Class, M., Allen, J.D., Panchapakesan, B.: Spin-on nanoparticle tin oxide for microhotplate gas sensors. Sens. Actuators B: Chem. 77(1–2), 145–154 (2001). https://doi.org/10.1016/S0925-4005(01)00686-4

    Article  Google Scholar 

  28. Adedokun, O., Odebunmi, B.M., Sanusi, Y.K.: Effect of fluorine doping on the structural, optical and electrical properties of spin coated tin oxide thin films for solar cells application. Sci. Focus J. (2018–2019). https://doi.org/10.36293/sfj.2019.0002

  29. Yilbas, B.S., Al-Sharafi, A., Ali, H.: Surfaces for self-cleaning. Self-Cleaning Surf Water Droplet Mobil, pp. 45–98 (2019). https://doi.org/10.1016/b978-0-12-814776-4.00003-3

  30. Boudrioua, A., Chakaroun, M., Fischer, A.: Introduction. Org Lasers, Elsiver (2017). https://doi.org/10.1016/b978-1-78548-158-1.50009-2

  31. Gu, F., et al.: Luminescence of SnO2 thin films prepared by spin-coating method. Cryst Growth 262, 182–185 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.028

  32. Meulendijks, N., Burghoorn, M., Van Ee, R., Mourad, M., et al.: Electrical conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose 24, 2191–2204 (2017)

    Google Scholar 

  33. Levy, D., Zayat, M. (eds.): Synthesis, Characterization, and Applications. The Sol-Gel Handbook (2015)

    Google Scholar 

  34. Korotcenkov, G., et al.: Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479, 38–51 (2005). https://doi.org/10.1016/j.tsf.2004.11

  35. Dislich, H., Hussmann, E.: Amorphous and crystalline dip coatings obtained from organometallic solutions: procedures, chemical processes and products. Thin Solid Films 77(1–3), 129–140 (1981). https://doi.org/10.1016/0040-6090(81)90369-2

    Article  Google Scholar 

  36. Chatelon, J.P., Terrier, C., Bernstein, E., Berjoan, R., Roger, J.A.: Morphology of SnO2 thin films obtaibed by the sol-gel technique. Thin Solid Films 247(2), 162–168 (1994)

    Google Scholar 

  37. Kumar, A., Nanda, D.: Methods and fabrication techniques of superhydrophobic surfaces. In: Superhydrophobic Polymer Coatings, pp. 43–75. Elsevier (2019). https://doi.org/10.1016/b978-0-12-816671-0.00004-7

  38. Neacşu, I.A., Nicoară, A.I., Vasile, O.R., Vasile, B.Ş.: Inorganic, micro- and nanostructured implants for tissue engineering. Nanobiomater Hard Tissue Eng. 4, 271–295 (2016)

    Google Scholar 

  39. Epifani, M., et al.: SnO2 thin films from metalorganic precursors: synthesis, characterization, microelectronic processing and gas-sensing properties. Sens. Actuators B: Chem. 217–226 (2007). https://doi.org/10.1016/j.snb.2006.12029

  40. Akl, A.: Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis. Appl. Surf. Sci. 233, 307–319, 295-301 (2004). https://doi.org/10.1007/bf02708520

  41. Yadav, A.A.: SnO2 thin film electrodes deposited by spray pyrolysis for electrochemical supercapacitor applications. J. Mater. Sci.: Mater. Electron. 27(2), 1866–1872 (2015). https://doi.org/10.1007/s10854-015-3965-4

    Article  Google Scholar 

  42. Patil, G.E., Kajale, D.D., Gaikwad, V.B., Jain, G.H.: Spray pyrolysis deposition of nanostructured tin oxide thin films. ISRN Nanotechnol. 2012, 1–5 (2012). https://doi.org/10.5402/2012/275872

    Article  Google Scholar 

  43. Sears, W.M., Gee, M.A.: Mechanics of film formation during the spray pyrolysis of tin oxide. Thin Solid Films 165(1), 265–277 (1988). https://doi.org/10.1016/0040-6090(88)90698-0

    Article  Google Scholar 

  44. Pengyi, L., Junfang, C., Wangdian, S.: Sheet resistance angas-sensing properties of tin oxide thin films by Plasma enhanced chemical vapor deposition. Plasma Sci. Technol. 6, 22–59 (2004). https://doi.org/10.1088/1009-0630/6/2/015

  45. Moorthy, S.B.K. (ed.): Thin Film Structures in Energy Applications. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14774-1

    Book  Google Scholar 

  46. Manawi, Y., Ihsanullah, A., Al-Ansari, T., Atieh, M.: A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 11(5), 822–829 (2018). https://doi.org/10.3390/ma11050822

    Article  Google Scholar 

  47. Seshan, K., Schepis, D.: Handbook of Thin Film Deposition. William Andrew, p. 103 (2018). https://doi.org/10.1016/b978-0-12-812311-9.00030-x

  48. Shaeri, M.R., Jen, T.-C., Yuan, C.Y.: Reactor scale simulation of an atomic layer deposition process. Chem. Eng. Res. Des. 94, 584–593 (2015). https://doi.org/10.1016/j.cherd.2014.09.019

    Article  Google Scholar 

  49. Ahmed, A., Zahedi, G.: Sustainable energy systems: role of optimization modeling techniques in power generation and supply: a review. Renew. Sustain. Energy Rev. 15(8), 3480–3500 (2011)

    Article  Google Scholar 

  50. Jain, M., Ramteke, N.: Modeling and simulation of solar photovoltaic module using matlab/simulink. J. Comput. Eng. 15(5), 27–34 (2013)

    Google Scholar 

  51. Zeng, Y., et al.: Review on optimization modeling of energy systems planning and GHG emission mitigation under uncertainty. Energies 4(1), 1624–1656 (2011)

    Article  Google Scholar 

  52. Singh, K.J., et al.: Artificial neural network approach for more accurate solar cell electrical circuit model. Int. J. Comput. Appl. 4(3), 101–116 (2014)

    Google Scholar 

  53. Selmi, T., Abdul-niby, M., Alameen, M.: Analysis and investigation of a two-diode solar cell using MATLAB/simulink. Int. J. Renew. Energy Res. 4(1), 99–102 (2014)

    Google Scholar 

  54. Atourki, L., Kirou, H., Ihlal, A., Bouabid, K.: Numerical study of thin films CIGS bilayer solar cells using SCAPS. Mater. Today: Proc. 3(7), 2570–2577 (2016)

    Google Scholar 

  55. Khoshsirat, N., Md. Yunus, N.A.: Numerical simulation of CIGS thin film solar cells using SCAPS-1D. In: IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (2013)

    Google Scholar 

  56. Mouchou, R.T., Jen, T.C., Laseinde, O.T., Ukoba, K.O.: Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS. Mater. Today: Proc. 38, 835–841 (2021)

    Google Scholar 

Download references

Acknowledgment

The authors would like to appreciate the funding of NRF and the URC funding mechanism of the University of Johannesburg, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Laseinde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mouchou, R., Laseinde, T., Jen, TC., Ukoba, K. (2021). Developments in the Application of Nano Materials for Photovoltaic Solar Cell Design, Based on Industry 4.0 Integration Scheme. In: Ahram, T.Z., Karwowski, W., Kalra, J. (eds) Advances in Artificial Intelligence, Software and Systems Engineering. AHFE 2021. Lecture Notes in Networks and Systems, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-80624-8_64

Download citation

Publish with us

Policies and ethics