Skip to main content

Autonomous Emergency Operation of Nuclear Power Plant Using Deep Reinforcement Learning

  • Conference paper
  • First Online:
Advances in Artificial Intelligence, Software and Systems Engineering (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 271))

Included in the following conference series:

Abstract

The goal of emergency operation in nuclear power plants (NPPs) is to ensure the integrity of reactor core as well as containment building under undesired initiating events. In this operation, operators perform the situation awareness, the confirmation of automatic actuation of safety systems, and the manual operations to cool down the reactor according to the operating procedures. This study aims to develop an autonomous operation agent that can reduce the pressure and temperature of primary system. The agent applies the Soft Actor-Critic (SAC) algorithm, which is a kind of deep reinforcement algorithm for optimizing stochastic actions. With the SAC, the agent is trained to find actions to meet the pressure and temperature curve criteria and the cooling rate. In addition, the test using a compact nuclear simulator demonstrates that the agent can cool down the reactor by manipulating the necessary systems in compliance with the constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, R.T., Neal, J.S., Ray Brittain, C., Mullens, J.A.: Autonomous control capabilities for space reactor power systems. In: AIP Conference Proceedings, vol. 699, no. 1. American Institute of Physics (2004)

    Google Scholar 

  2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  3. Lee, D., Seong, P.H., Kim, J.: Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework. Ann. Nucl. Energy 119, 287–299 (2018)

    Article  Google Scholar 

  4. Lee, D., Arigi, A.M., Kim, J.: Algorithm for autonomous power-increase operation using deep reinforcement learning and a rule-based system. IEEE Access 8, 196727–196746 (2020)

    Article  Google Scholar 

  5. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

    Article  Google Scholar 

  6. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870 (2018)

    Google Scholar 

  7. Park, J., Jung, W.: A study on the systematic framework to develop effective diagnosis procedures of nuclear power plants. Reliab. Eng. Syst. Saf. 84(3), 319–335 (2004)

    Article  Google Scholar 

  8. KHNP: APR1400 Design Description. Korea Hydro & Nuclear Power Co., Ltd. (2014)

    Google Scholar 

  9. KAREI: Advanced Compact Nuclear Simulator Textbook. Nuclear Training Center in Korea Atomic Energy Research Institute (1990)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning under Grant N01190021-06, and in part by the Korean Government, Ministry of Science and ICT under Grant NRF-2018M2B2B1065651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, D., Kim, J. (2021). Autonomous Emergency Operation of Nuclear Power Plant Using Deep Reinforcement Learning. In: Ahram, T.Z., Karwowski, W., Kalra, J. (eds) Advances in Artificial Intelligence, Software and Systems Engineering. AHFE 2021. Lecture Notes in Networks and Systems, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-80624-8_65

Download citation

Publish with us

Policies and ethics