Skip to main content

Towards a Continuous Process Model for Data Science Projects

  • Conference paper
  • First Online:
Advances in the Human Side of Service Engineering (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 266))

Included in the following conference series:

  • 1653 Accesses

Abstract

Process models can assist in structuring and managing projects. For typical IT-projects, there are plenty process models which evolved over the last decades. Compared to them, data science process models focus on the specific challenges and aspects of data-based projects. They started evolving just before the turn of the millennium. This paper evaluates contents which could and should be included in data science process models to be useful for enterprises, especially when they are small and medium-sized or do not have their core competences in data science or IT. Regarding these contents, some existing models are analysed, providing an overview of their focus. Concluding, a vision for a continuous data science process model is given, which not only addresses the previously discussed contents, but also fulfils additional aspects to be useful in practise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rindfleisch, A.: The second digital revolution. Mark. Lett. 31(1), 13–17 (2019). https://doi.org/10.1007/s11002-019-09509-4

    Article  Google Scholar 

  2. Marquardt, K.: Smart services – characteristics, challenges, opportunities and business models. In: Proceedings of the International Conference on Business Excellence, vol. 11, no. 1, pp. 789–801 (2017)

    Google Scholar 

  3. Bovenschulte, M., Stubbe, J.: Einleitung: „Intelligenz ist nicht das Privileg von Auserwählten.“. In: Wittpahl, V. (ed.) Künstliche Intelligenz, pp. 215–220. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58042-4_13

    Chapter  Google Scholar 

  4. High-Level Expert Group on Artificial Intelligence: A definition of AI: main capabilities and disciplines (2019)

    Google Scholar 

  5. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996). https://doi.org/10.1145/240455.240464

    Article  Google Scholar 

  6. Martinez-Plumed, F., et al.: CRISP-DM twenty years later: from data mining processes to data science trajectories. IEEE Trans. Knowl. Data Eng. 1 (2020)

    Google Scholar 

  7. Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. 50(3), 1–42 (2017)

    Article  Google Scholar 

  8. Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)

    Article  Google Scholar 

  9. Davenport, T.H., Patil, D.J.: Data scientist: the sexiest job of the 21st century (2012)

    Google Scholar 

  10. Google: Google Trends for “Data Science”, “Data Mining” and “Data Analytics” (2020)

    Google Scholar 

  11. Hesenius, M., Schwenzfeier, N., Meyer, O., Koop, W., Gruhn, V.: Towards a software engineering process for developing data-driven applications. In: 2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), pp. 35–41. IEEE (2019)

    Google Scholar 

  12. Mariscal, G., Marbán, Ó., Fernández, C.: A survey of data mining and knowledge discovery process models and methodologies. Knowl. Eng. Rev. 25(2), 137–166 (2010)

    Article  Google Scholar 

  13. Martínez-Plumed, F., et al.: CASP-DM: context aware standard process for data mining (2017)

    Google Scholar 

  14. Chapman, P., et al.: CRISP-DM 1.0: step-by-step data mining guide (2000)

    Google Scholar 

  15. Piatetsky, G.: CRISP-DM, still the top methodology for analytics, data mining, or data science projects (2014)

    Google Scholar 

  16. IBM Corporation: Analytics solutions unified method: implementations with agile principles (2016)

    Google Scholar 

  17. Kienzler, R.: The lightweight IBM Cloud Garage Method for data science: a process model to map individual technology components to the reference architecture (2019)

    Google Scholar 

  18. Kienzler, R.: Architectural decisions guidelines: an architectural decisions guide for data science (2019)

    Google Scholar 

  19. Microsoft: Team Data Science Process Documentation (2020)

    Google Scholar 

  20. Schulz, M., et al.: DASC-PM v1.0 - Ein Vorgehensmodell für Data-Science-Projekte (2020)

    Google Scholar 

  21. Tombeil, A.-S., Kremer, D., Neuhüttler, J., Dukino, C., Ganz, W.: Potenziale von Künstlicher Intelligenz in der Dienstleistungsarbeit. In: Bruhn, M., Hadwich K. (eds.) Automatisierung und Personalisierung von Dienstleistungen, Forum Dienstleistungsmanagement, pp. 135–154. Springer, Wiesbaden (2020).https://doi.org/10.1007/978-3-658-30168-2_5

  22. Frey, C.B., Osborne, M.A.: The future of employment: how susceptible are jobs to computerisation? (2013)

    Google Scholar 

  23. Lindner, D., Leyh, C.: Digitalisierung von KMU – Fragestellungen, Handlungsempfehlungen sowie Implikationen für IT-Organisation und IT-Servicemanagement. HMD Praxis der Wirtschaftsinformatik 56(2), 402–418 (2019). https://doi.org/10.1365/s40702-019-00502-z

    Article  Google Scholar 

  24. Leyh, C., Bley, K.: Digitalisierung: Chance oder Risiko für den deutschen Mittelstand? – Eine Studie ausgewählter Unternehmen. HMD Praxis der Wirtschaftsinformatik 53(1), 29–41 (2015). https://doi.org/10.1365/s40702-015-0197-2

    Article  Google Scholar 

  25. Capgemini: Studie IT-Trends 2018: Digitalisierung: Aus Ideen werden Ergebnisse (2018)

    Google Scholar 

  26. Opara-Martins, J., Sahandi, R., Tian, F.: Critical review of vendor lock-in and its impact on adoption of cloud computing. In: International Conference on Information Society (iSociety 2014), pp. 92–97. IEEE (2014)

    Google Scholar 

  27. Renkl, A., Atkinson, R.K., Maier, U.H.: From example study to problem solving: smooth transitions help learning (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Kutzias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kutzias, D., Dukino, C., Kett, H. (2021). Towards a Continuous Process Model for Data Science Projects. In: Leitner, C., Ganz, W., Satterfield, D., Bassano, C. (eds) Advances in the Human Side of Service Engineering. AHFE 2021. Lecture Notes in Networks and Systems, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80840-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80840-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80839-6

  • Online ISBN: 978-3-030-80840-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics