
JoCG 21(1), 128–144, 2030 128

Journal of Computational Geometry jocg.org

A CONSTANT-FACTOR APPROXIMATION ALGORITHM FOR VERTEX
GUARDING A WV-POLYGON ∗

Stav Ashur,†Omrit Filtser,‡ and Matthew J. Katz §

Abstract. The problem of vertex guarding a simple polygon was first studied by Subir
K. Ghosh (1987), who presented a polynomial-time O(log n)-approximation algorithm for
placing as few guards as possible at vertices of a simple n-gon P , such that every point in
P is visible to at least one of the guards. Ghosh also conjectured that this problem admits
a polynomial-time algorithm with constant approximation ratio. Due to the centrality of
guarding problems in the field of computational geometry, much effort has been invested
throughout the years in trying to resolve this conjecture. Despite some progress (surveyed
below), the conjecture remains unresolved to date. In this paper, we confirm the conjecture
for the important case of weakly visible polygons, by presenting a (2 + ε)-approximation
algorithm for guarding such a polygon using vertex guards. A simple polygon P is weakly
visible if it has an edge e, such that every point in P is visible from some point on e. We
also present a (2 + ε)-approximation algorithm for guarding a weakly visible polygon P ,
where guards may be placed anywhere on P ’s boundary (except in the interior of the edge
e). Finally, we present an O(1)-approximation algorithm for vertex guarding a polygon P
that is weakly visible from a chord.

Our algorithms are based on an in-depth analysis of the geometric properties of the
regions that remain unguarded after placing guards at the vertices to guard the polygon’s
boundary. Finally, our algorithms may become useful as part of the grand attempt of
Bhattacharya et al. to prove the original conjecture, as their approach is based on partitioning
the underlying simple polygon into a hierarchy of weakly visible polygons.

1 Introduction

The Art Gallery Problem is a classical problem in computational geometry, posed by Victor
Klee in 1973: Place a minimum number of points (representing guards) in a given simple
polygon P (representing an art gallery), so that every point in P is seen by at least one
of the placed points. We say that a point p ∈ P sees (or guards) a point q ∈ P if the line
segment pq is contained in P . We say that a subset G ⊆ P guards P , if every point in P is
seen by at least one point in G.
∗An earlier version of this paper (excluding the proof of Theorem 16) was presented at WAOA’20 [3].

O. Filtser was supported by the Eric and Wendy Schmidt Fund for Strategic Innovation, by the Council for
Higher Education of Israel, and by Ben-Gurion University of the Negev. M. Katz was supported by grant
1884/16 from the Israel Science Foundation.
†Ben-Gurion University of the Negev, Beer-Sheva, Israel, stavshe@post.bgu.ac.il
‡The Open University of Israel, Raanana, Israel, omrit.filtser@gmail.com
§Ben-Gurion University of the Negev, Beer-Sheva, Israel, matya@cs.bgu.ac.il

http://jocg.org/

JoCG 21(1), 128–144, 2030 129

Journal of Computational Geometry jocg.org

There are numerous variants of the art gallery problem, which are also referred to as
the art gallery problem. These variants differ from one another in (i) the underlying domain,
e.g., simple polygon, polygon with holes, orthogonal polygon, or terrain, (ii) which parts of
the domain must be guarded, e.g., only its vertices, only its boundary, or the entire domain,
(iii) the type of guards, e.g., static, mobile, or with various restrictions on their coverage area
such as limited range, (iv) the restrictions on the location of the guards, e.g., only at vertices
(vertex-guards), only on the boundary (boundary-guards), or anywhere (point-guards), and
(v) the underlying notion of visibility, e.g., line of sight, rectangle visibility, or staircase
visibility. It is impossible to survey here the vast literature on the art gallery problem,
ranging from combinatorial and optimization results to hardness of computation results, so
we only mention the book by O’Rourke [28] and a small sample of recent papers [1, 9].

In this paper, we deal with the version of the art gallery problem, where the guards
are confined to the boundary of the underlying polygon, and in particular to its vertices.
Such guards are referred to as boundary guards or vertex guards, respectively. The first to
present results for this version was Ghosh [15, 16], who gave a polynomial-time O(log n)-
approximation algorithm for guarding either a simple polygon or a polygon with holes using
vertex (or edge) guards (see below for the definition of an edge guard). In the related work
paragraph below we survey many of the subsequent results for this version.

We consider an important family of simple polygons, namely, the family of weakly
visible polygons. A simple polygon P is weakly visible if it has an edge e, such that every
point in P is visible from some point on e, or, in other words, a guard patrolling along e
can see the entire polygon. We also consider polygons that are weakly visible from a chord,
rather than an edge, where a chord in a polygon P is a line segment whose endpoints are on
the boundary of P and whose interior is contained in the interior of P .

Figure 1: A WV-polygon P and a subset of its vertices that guards P ’s boundary but not
its interior.

The problem of guarding a weakly visible polygon (WV-polygon) P by vertex guards
was studied by Bhattacharya et al. [7]. They first present a 4-approximation algorithm for
vertex guarding only the vertices of P . Next, they claim that this algorithm places the guards
at vertices in such a way that each of the remaining unguarded regions of P has a boundary
edge which is contained in an edge of P . Based on this claim, they devise a 6-approximation
algorithm for vertex guarding P ’s boundary (by adding vertex guards to their set of vertex
guards that guards P ’s vertices), and present it as a 6-approximation algorithm for guarding
P (boundary plus interior). Unfortunately, this claim is false, i.e., the interior of P might still
contain unguarded regions; counterexamples were constructed and approved by the authors
(who are now attempting to fix their algorithm, so as to obtain an algorithm for vertex
guarding P entirely) [8]. Thus, the challenge of obtaining a constant-factor approximation

http://jocg.org/

JoCG 21(1), 128–144, 2030 130

Journal of Computational Geometry jocg.org

algorithm for guarding a WV-polygon with vertex guards or boundary guards is still on.
Figure 1 depicts a WV-polygon P and a subset of its vertices (which is not necessarily the
one returned by the algorithm of Bhattacharya et al. [7]) that guards P ’s boundary but not
its interior.

The main result of this paper is such an algorithm. Specifically, denote by OPT
the size of a minimum-cardinality subset of the vertices of P that guards P . We present a
polynomial-time algorithm that finds a subset I of the vertices of P , such that I guards P
and |I| ≤ (2 + ε)OPT, for any constant ε > 0.

Already in 1987, Ghosh conjectured that there exists a constant-factor approximation
algorithm for vertex guarding a simple polygon. Recently, Bhattacharya et al. [6] managed
to devise such an algorithm for vertex guarding the vertices or the boundary of a simple
polygon P , by first partitioning P into a hierarchy of WV-polygons according to the link
distance from a starting vertex. They also present such an algorithm for vertex guarding
P (boundary plus interior), however, this algorithm is erroneous, since it relies on the false
statement mentioned above. Thus, our result may prove useful towards resolving Ghosh’s
conjecture.

We note that our algorithm for vertex guarding a WV-polygon is more general than
that of Bhattacharya et al. [7] (assuming it can be fixed), since unlike theirs, it is not based
on a specific procedure for placing guards at vertices so as to see all the polygon’s vertices.
This we believe makes our algorithm a more suitable tool for dealing with the general problem
(i.e., for simple polygons), and will enable a better approximation ratio, if successful.

Prior to our result, the only (non-trivial) family of polygons for which a constant-
factor approximation algorithm for guarding a member of the family was known, is the family
of monotone polygons. Specifically, Krohn and Nilsson [24] showed that vertex guarding a
monotone polygon is NP-hard, and presented a constant-factor approximation algorithm for
point guarding such a polygon (as well as an O(OPT2)-approximation algorithm for point
guarding an orthogonal polygon).

Related work. Several improvements to Ghosh’s O(log n)-approximation algorithm were
obtained over the years. In 2006, Efrat and Har-Peled [12] described a randomized polynomial-
time O(logOPT)-approximation algorithm for vertex guarding a simple polygon, where the
approximation factor is correct with high probability. Moreover, they considered the version
in which the guards are restricted to the points of an arbitrarily dense grid, and presented a
randomized algorithm which returns an O(logOPT)-approximation with high probability,
where OPT is the size of an optimal solution to the modified problem and the running time
depends on the ratio between the diameter of the polygon and the grid size. Combining
ideas from the latter algorithm and from the work of Deshpande et al. [11], Bonnet and
Miltzow [9] presented a randomized polynomial-time O(logOPT)-approximation algorithm
for point guards, assuming integer coordinates and a general position assumption on the
vertices of the underlying simple polygon.

In 2011, King and Kirkpatrick [22] observed that by applying methods that were
developed for the Set Cover problem after the publication of Ghosh’s algorithm, one can
obtain an O(logOPT) approximation factor for vertex guarding a simple polygon (and an

http://jocg.org/

JoCG 21(1), 128–144, 2030 131

Journal of Computational Geometry jocg.org

O(log h logOPT) factor for vertex guarding a polygon with h holes). Moreover, they improved
the approximation factor to O(log logOPT) for guarding a simple polygon either with vertex
guards or boundary guards, where in the former case the running time is polynomial in n
and in the latter case it is polynomial in n and the spread of the vertices; see also [23].

Most of the variants of the art gallery problem are NP-hard. O’Rourke and
Supowit [29] proved this for polygons with holes and point guards, Lee and Lin [26] proved
this for simple polygons and vertex guards, and Aggarwal [2] generalized the latter proof to
simple polygons and point guards. Eidenbenz et al. [13] presented a collection of hardness
results. In particular, they proved that it is unlikely that a PTAS exists for vertex guarding
or point guarding a simple polygon. Recently, Abrahamsen et al. [1] proved that the art
gallery problem is ∃R-complete, for simple polygons and point guards.

WV-polygons were defined and studied in the context of mobile guards [28]. An edge
guard is a guard that traverses an edge of the polygon. Thus, a simple polygon is weakly
visible if and only if it can be guarded by a single edge guard, and the problem of vertex
guarding a WV-polygon is equivalent to the problem of replacing the single edge guard by as
few vertex guards as possible. Avis and Toussaint [5] presented a linear-time algorithm for
detecting whether a polygon is weakly visible from a given edge. Subsequently, Sack and
Suri [30] and Das et al. [10] devised linear-time algorithms which output all the edges (if any)
from which the polygon is weakly visible. Algorithms for finding either an edge or a chord
from which the polygon is weakly visible were given by Ke [21] and by Ghosh et al. [17].
Finally, Bhattacharya et al. [7] proved that the problem of point guarding a WV-polygon
is NP-hard, and that there does not exist a polynomial-time algorithm for vertex guarding
a WV-polygon with holes with approximation factor better than ((1 − ε)/12) lnn, unless
P=NP.

Our algorithm for vertex guarding a WV-polygon uses a solution to the problem
of guarding the boundary of a WV-polygon using vertex guards. This problem admits a
local-search-based PTAS (see [4, 20]), which is similar to the local-search-based PTAS of
Gibson et al. [18] for vertex guarding the vertices of a 1.5D-terrain. The proof of both these
PTASs is based on the proof scheme of Mustafa and Ray [27].

Results. Our algorithm for vertex guarding a WV-polygon P (presented in Section 3)
consists of two main parts. In the first part, it computes a subset G of the vertices of P
that guards P ’s boundary. This is done by applying a known algorithm for this task. In the
second part, it computes a subset G′ of the vertices of P of size at most |G|, such that G∪G′
guards P (boundary plus interior). Thus, if we apply the algorithm of [4] for computing G,
then the approximation ratio of our algorithm is 2+ ε, since the former algorithm guarantees
that |G| ≤ (1 + ε/2)OPT∂ , where OPT∂ is the size of a minimum-cardinality subset of the
vertices of P that guards P ’s boundary, and clearly OPT∂ ≤ OPT.

Let x be a vertex in G and let Vis(x) be the visibility polygon of x (i.e., Vis(x) is the
set of all points of P that are visible from x), then P \ V is(x) is a set of connected regions,
which we refer to as pockets. Moreover, a connected subset H of P is a hole in P w.r.t. G
if (i) there is no point in H that is visible from G, and (ii) H is maximal in the sense that
any connected subset of P that strictly contains H has a point that is visible from G. The

http://jocg.org/

JoCG 21(1), 128–144, 2030 132

Journal of Computational Geometry jocg.org

second part of our algorithm (and its proof) are based on a deep structural analysis and
characterization of the pockets and holes in P (presented in Section 2).

The requirement that G is a subset of the vertices of P is actually not necessary; the
second part of our algorithm only needs a set of boundary points that guards P ’s boundary.
This observation enables us to use a smaller number of guards, assuming that boundary
guards are allowed.

Finally, in Section 4, we consider the more general family of polygons, those that
are weakly visible from a chord. Notice that a chord uv in P slices P into two polygons,
such that each of them is weakly visible w.r.t. uv (which is an edge in each of them). After
updating two of the geometric claims presented in Section 2, we show how to apply our
algorithm to a polygon that is weakly visible from a chord. The approximation ratio in this
case is 3|G| (rather than 2|G|). However, we are not aware of any specialized algorithm for
computing G in this case. We could apply though the (yet unpublished) c-approximation
algorithm of Bhattacharya et al. [6] for vertex guarding the boundary of a simple polygon,
where c is a relatively large constant, to obtain an approximation ratio of 3c.

2 Structural analysis

For two points x, y ∈ R2, we denote by xy the line segment whose endpoints are x and y,
and by `xy the line through x and y. We denote by `x the horizontal line through x.

Let P be a polygon whose set of vertices is V = {u = v1, v2, . . . , vn = v}, and which
is weakly visible from its edge e = uv. We denote the boundary of P by ∂P . The edges
of P are the segments v1v2, v2v3, . . . , vn−1vn and v1vn = uv. We assume w.l.o.g. that uv is
contained in the x-axis, and u is to the left of v. Furthermore, we assume that P is contained
in the (closed) halfplane above the x-axis; in particular, the angles at u and v are convex.
This assumption can be easily removed, as we show towards the end of Section 3. Finally,
for simplicity we assume that there are no two vertices of P with the same x-coordinate.

2.1 Visibility polygons

For a point p ∈ P , let Vis(p) = {q | pq ⊆ P} be the visibility polygon of p. In other
words, Vis(p) is the set of all points of P that are visible from p. By definition Vis(p) is a
star-shaped polygon, and thus clearly also a simple polygon, contained in P (see Figure 2).

p

Vis(p)

u v

P

Figure 2: The visibility polygon of a point p ∈ P .

Any vertex of P that belongs to Vis(p) is also considered a vertex of Vis(p). Consider

http://jocg.org/

JoCG 21(1), 128–144, 2030 133

Journal of Computational Geometry jocg.org

the set of edges of Vis(p). Some of these edges are fully contained in ∂P . The edges that are
not contained in ∂P are constructed edges: these are edges whose endpoints are on ∂P
and whose interior is contained in the interior of P (the gray dotted edges in Figure 2).

a b

u v

p

Figure 3: If p sees both a and b, then p sees the entire segment ab.

Claim 1. For any p ∈ P , there exists a single edge of Vis(p) that is contained in uv.

Proof. Since p is visible from uv, uv ∩ Vis(p) 6= ∅. Let a (resp. b) be the leftmost (resp.
rightmost) point on uv that belongs to Vis(p) (see Figure 3). The triangle 4pab cannot
contain points of ∂P in its interior, because ∂P cannot cross the segments pa and bp.
Therefore, p sees every point in 4pab, and in particular it sees every point between a and b
on uv.

2.2 Pockets

Consider P \ V is(p) (see Figure 2). This is a set of connected regions, which we refer to
as pockets. Since P is a simple polygon, each pocket C is adjacent to a single constructed
edge, and therefore the intersection of ∂P and C is connected. We refer to ∂P ∩ C as the
boundary of the pocket C, and denote it by ∂C. (Thus the constructed edge itself is not
part of ∂C.)

Let xy be a constructed edge such that x is below y (w.r.t. the y-axis), and denote
by Cxy the pocket adjacent to xy. We say that Cxy lies above (resp. below) `xy, if for any
point w in the interior of xy, all the points that w sees (points of Vis(w)) that lie above
(resp. below) `xy, belong to Cxy (see Figure 4 (a)/(b) for “above” and (c)/(d) for “below”).
Notice that since xy divides P into two parts, Cxy and P \ Cxy, ‘stepping off’ xy to one
side, places us in the interior of Cxy (and ‘stepping off’ xy to the other side places us in the
interior of P \ Cxy).

Note that if Cxy lies above (resp. below) `xy, it does not necessarily mean that all
the points of Cxy lie above (resp. below) `xy. Indeed, when x ∈ uv, Cxy may have points on
both sides of `xy (see Figure 5).

We say that xy is an upper edge (resp. lower edge), if Cxy lies below (resp. above)
`xy. Notice that by Claim 1, Vis(p) has at most two constructed edges with an endpoint in
uv. Moreover, at most one of these edges is an upper edge.

Claim 2. Let xy and x′y′ be two constructed edges (which belong to two different visibility
polygons), such that xy crosses x′y′, and y′ is on the same side of `xy as Cxy. Then, y′ ∈ ∂Cxy

(see Figure 6).

http://jocg.org/

JoCG 21(1), 128–144, 2030 134

Journal of Computational Geometry jocg.org

x

x

y

y

`xy

`xy

`x

`x

x

y

`xy

`x

x

y

`xy

`x

w

w

w

w

Cxy

Cxy
Cxy

Cxy

(a) (b)

(d)(c)

Figure 4: xy is a constructed edge, and the gray area is the set of all points of Vis(w) that
lie below/above `xy. In (a) and (b) the pocket Cxy lies above `xy, and thus xy is a lower
edge. In (c) and (d) the pocket Cxy lies below `xy, and xy is an upper edge. In (a) and (d)
the slope of xy is positive, and in (b) and (c) it is negative.

u v

p

y

x

`xy

`y

`x = `uv
Cxy

Figure 5: The gray area is Vis(p). xy is an upper edge (i.e., Cxy lies below `xy) and x is on
uv, but some points of Cxy lie above `xy.

Proof. Let w be the crossing point of xy and x′y′. Then, w is a point in the interior of xy
that sees y′, and y′ is on the same side of `xy as Cxy, so y′ ∈ Cxy. Since x′y′ is a constructed
edge, y′ ∈ ∂P and thus y′ ∈ ∂Cxy.

Claim 3. Let xy be a constructed edge of Vis(p) such that x is below y, then Cxy lies above
`x (in the weak sense), i.e., every point in Cxy is either above or on `x. Moreover, if x /∈ uv,
then Cxy lies strictly above `x, i.e., every point in Cxy is above `x.

Proof. If x ∈ uv, then since P is above `uv = `x, we get that Cxy is above `x. Moreover,
observe that if ∂Cxy ∩ uv 6= ∅, then x ∈ uv. Otherwise (i.e., if x 6∈ uv), we must have
uv ⊆ ∂Cxy, and since the entire pocket Cxy is not visible from p, we get that p is not visible
from uv, which contradicts the fact that P is a WV-polygon.

If x /∈ uv, then x is above `uv (see Figure 4). By the observation above, ∂Cxy∩uv = ∅
(and thus of course Cxy ∩ uv = ∅). Let z be any point in Cxy. Since P is a WV-polygon,
there exists a point z′ on uv such that zz′ ⊆ P . The segment zz′ has to cross xy, because

http://jocg.org/

JoCG 21(1), 128–144, 2030 135

Journal of Computational Geometry jocg.org

x

yy′

x′
u v

Cxy

w

Figure 6: Two constructed edges that cross each other.

z ∈ Cxy and z′ /∈ Cxy. Since x is below y, this crossing point is above x, which in turn is
above z′, so we get that z is above x. We conclude that Cxy lies strictly above `x.

2.3 Holes

Let G ⊆ P be a set of points that guards ∂P . A connected subset H of P is a hole in P
w.r.t. G if (i) there is no point in H that is visible from G, and (ii) H is maximal in the sense
that any connected subset of P that strictly contains H has a point that is visible from G.

Let H be a hole in P w.r.t. G, then clearly H is a simple polygon. Each edge of H
lies on some constructed edge e, and we say that H (and this edge of H) lean on the edge e
and that e supports H (and this edge of H). Notice that H is fully contained in the pocket
adjacent to e. Moreover, since H ∩ ∂P = ∅, we can view H as an intersection of halfplanes
(defined by the lines containing the constructed edges supporting the edges of H), and thus
obtain the following observation.

Observation 4. Any hole H in P w.r.t. G is a convex polygon.

Another immediate but useful observation is the following.

Observation 5. Any hole H in P w.r.t. G leans on at least one upper edge and at least one
lower edge.

Next, we show that any hole can be guarded by a single vertex, and that such a
vertex can be found in polynomial time. We actually prove a slightly more general claim.

Lemma 6. Let S be a simple convex polygonal region contained in P . Then, there exists a
vertex w of P , such that S is visible from w, i.e., every point in S is visible from w. Moreover,
w can be found in polynomial time.

S
t

y

s

y′

s′
l

P

Sy s

Pw

Figure 7: Proof of Lemma 6.

http://jocg.org/

JoCG 21(1), 128–144, 2030 136

Journal of Computational Geometry jocg.org

Proof. If P and S share a vertex, then we are done. Otherwise, let y be a point on ∂P that is
closest to S, where the distance between a point p and S is dist(p, S) = min{||p− s|| | s ∈ S},
and let s be a point in S closest to y. We first prove that S is visible from y. If y is also
on ∂S, then y clearly sees S, so assume that y is not on ∂S and that there exists a point
t ∈ S that is not visible from y. Then, there exists a point y′ on ∂P that lies in the interior
of the segment yt. Let s′ be a point in S closest to y′, and let l be the line through s′

and perpendicular to y′s′. Since S is convex, it is contained in one of the two halfplanes
supported by l. Assume w.l.o.g. that l is horizontal and that S is contained in the bottom
halfplane supported by l (see Figure 7, left). Then y′ is above l and its projection onto l is
s′. Now, it is impossible that y is not above y′ (in terms of y-coordinate), since this would
imply that t is above l. So y must be above y′, but then ||y − s|| > ||y′ − s′|| and we have
reached a contradiction.

Now, if y is a vertex of P , then we are done. Otherwise, we slide y along ∂P , in any
one of the directions, until the convex hull of S ∪ y meets a vertex w of P (see Figure 7,
right). The vertex w is either an endpoint of the edge of P on which we slide y, or it is
another vertex of P that lies on one of the tangents to S through y. In both cases, w clearly
sees S.

3 The Algorithm

We show that given a set G of vertices that guards ∂P , one can find a set of vertices G′ of
size at most |G| such that G ∪G′ guards P (boundary plus interior).

h′

u v

h

h′

u vx

y
p

x′

Cxy

h

Figure 8: Left: The polygon P and the set of guards G. Right: In the iteration for the edge
xy, p is the topmost among the five relevant intersection points, and a vertex that guards
4xpx′ is added to G′.

http://jocg.org/

JoCG 21(1), 128–144, 2030 137

Journal of Computational Geometry jocg.org

Algorithm 1 Vertex Guarding a WV-polygon

Input: A polygon P weakly visible from its edge uv, and a set G of vertices of P that
guards ∂P (see Figure 8, left).
Output: A set of vertices G′, such that G ∪G′ guards P .

Compute the set E of the constructed edges of the visibility polygons of the vertices in G.

For each upper edge e = xy in E with x ∈ uv:

1. Find the topmost intersection point p of e with an edge e′ = x′y′ in E with x′ ∈ uv
such that x′ is on the same side of `xy as the pocket Cxy (see Figure 8, right).

2. If such a point p exists (then the triangle 4xpx′ is contained in P), find a vertex that
guards 4xpx′ (see description in the proof of Lemma 6) and add it to G′.

Now our goal is to show that for any hole H in P w.r.t. G there exists a vertex in G′

that guards it. More precisely, we show that H is contained in one of the triangles considered
by the algorithm.

We first show in Claim 8 that H leans on an upper edge with an endpoint in uv.
Recall that H leans on at least one upper edge (Observation 5).

x

y

h2

h3
h1

x′

y′

u v
`x

H

`xy

y′

x′

h2

h1
h3

y

x

u v
`x

H

`xy

Figure 9: Two edges of the hole H: h1h2 and h2h3. The edge h1h2 leans on an upper edge
and h1 is below h2, thus h2h3 has to lean on an upper edge such that h2 is below h3 (and
not as drawn in the figure).

Claim 7. Let H = (h1, . . . , hk) be a hole in P w.r.t. G. Assume that the edge h1h2 of H
leans on an upper edge xy, such that x is below y, x /∈ uv, and h1 is below h2. Then h2h3
also leans on an upper edge and h2 is below h3.

Proof. Since xy is an upper edge, H (which is contained in Cxy) lies below `xy, and by
Claim 3, H lies strictly above `x (see Figure 9).

Let x′y′ be the constructed edge supporting h2h3 (i.e., h2h3 leans on x′y′), and
assume that y′ is on the same side of `xy as h3. (h2 is the crossing point of xy and x′y′, so

http://jocg.org/

JoCG 21(1), 128–144, 2030 138

Journal of Computational Geometry jocg.org

x′ and y′ are on different sides of `xy.) Hence, y′ is on the same side of `xy as Cxy, and by
Claim 2, y′ ∈ ∂Cxy. Moreover, since x /∈ uv, we know by Claim 3 that y′ is strictly above x
(and in particular, y′ /∈ uv).

Next we show that h2 is below h3, by showing that x′ is below y′. Indeed, if x′ is
above y′ (as in Figure 9), then since x is on the same side of `x′y′ as h1, it is also on the
same side of `x′y′ as Cx′y′ . Now, by Claim 2 again, x ∈ ∂Cx′y′ , and therefore, since y′ /∈ uv,
we know by Claim 3 that x is strictly above y′, a contradiction.

Finally, x′y′ is clearly an upper edge, since h1 (which is in Cx′y′) is below x′y′.

h1

h2

h3 h4

H

vu

Figure 10: The edges of H lean on a sequence of upper edges.

Claim 8. Let H be a hole in P w.r.t. G. Then H leans on an upper edge with an endpoint
in uv.

Proof. H has at least one edge h1h2 that leans on an upper edge x1y1, and assume w.l.o.g.
that h1 is below h2. If x1 or y1 are on uv then we are done. Otherwise, by Claim 7, the edge
h2h3 also leans on an upper edge x2y2, and h2 is below h3. Again, if one of x2, y2 is on uv
then we are done, otherwise by Claim 7, h3h4 leans on an upper edge and h3 is below h4.
This process must end since H = (h1, . . . , hk) is a convex polygon, and the only way for it to
end is if xiyi is an upper edge such that one of xi, yi is on uv, for some 1 ≤ i ≤ k − 1 (see
Figure 10).

Claim 9. Assume that h1h2 leans on an upper edge xy such that x is below y and x ∈ uv,
and that h1 is below h2. Then h2h3 leans on a constructed edge x′y′ (where x′ is below y′)
such that x′ ∈ uv.

Proof. Let x′y′ be the constructed edge supporting h2h3 such that x′ is below y′. The
constructed edges xy and x′y′ cross each other at the point h2, so by Claim 2 we get that
x ∈ ∂Cx′y′ , because h1 and x are on the same side of `x′y′ . Now, by Claim 3, x lies (weakly)
above `x′ , but x ∈ uv, so x′ ∈ `uv.

We are now ready to prove the correctness of our algorithm.

http://jocg.org/

JoCG 21(1), 128–144, 2030 139

Journal of Computational Geometry jocg.org

Claim 10. Any hole H in P w.r.t. G is contained in one of the triangles considered by
Algorithm 1.

Proof. By Claim 8, H has an edge which leans on an upper edge with an endpoint in uv.
Let h1h2, where h1 is below h2, be such an edge of H of minimum (absolute) slope, and let
xy, where x ∈ uv, be the upper edge supporting h1h2. By Claim 9, the edge h2h3 leans on a
constructed edge x′y′ such that x′ ∈ uv.

Assume first that the algorithm found a point p on xy. If p is not below h2, then the
triangle corresponding to p contains H and we are done. If p is below h1 (or p = h1), then x′

is not on the same side of xy as Cxy (because otherwise, p would not be a point below h2).
But, if so, then the (absolute) slope of h2h3 is smaller than that of h1h2, a contradiction.
Now, if the algorithm did not find such a point p on xy, then as before this means that x′ is
not on the same side of xy as Cxy and we reach a contradiction.

Approximation ratio. Notice that Algorithm 1 only uses a subset E′ of the constructed
edges, namely, the subset of upper edges with an endpoint in uv. Moreover, by Claim 1, we
get that |E′| ≤ |G|, since for any vertex w ∈ G, at most one of the (at most two) constructed
edges of Vis(w) with an endpoint in uv is an upper edge. For example, in Figure 2 the
sole constructed edge of p with an endpoint in uv is not an upper edge. Finally, in each
iteration, at most one vertex is added to G′. We conclude that |G′| ≤ |E′| ≤ |G|. Now, since
|G| ≤ (1 + ε/2)OPT (assuming G is computed by the algorithm of [4]), the approximation
ratio of Algorithm 1 is 2 + ε, for any ε > 0.

p

x x′u

Figure 11: Finding a vertex of P that guards the triangle 4xpx′.

Running time. The running time of the algorithm of [4] for finding a set of vertices G of
size (1 + ε/2)OPT that guards ∂P is O(nO(1/ε2)), for any ε > 0. The set of constructed
edges E can be computed in O(|G|n) time [19, 25]. Since |E′| ≤ |G|, the total number of
intersection points (Step 1 of Algorithm 1) is O(|G|2). Moreover, a vertex that guards the
triangle 4xpx′ (Step 2 of Algorithm 1) can be found in linear time by the following simple
algorithm. (We could use the algorithm described in the proof of Lemma 6, but in this
special case it is not necessary.) Assume, w.l.o.g., that x is to the left of x′. Then, for each
vertex w of P such that w is below p, compute the crossing point (if it exists) between
uv and the ray emanating from p and passing through w. Now, among the vertices whose
corresponding crossing point is between u and x, pick the one closest to x (see Figure 11).
Thus, the total running time of Algorithm 1 (given the set G) is O(|G|n) = O(n2). Note
that for a sufficiently small ε the total running time is dominated by O(nO(1/ε2)).

http://jocg.org/

JoCG 21(1), 128–144, 2030 140

Journal of Computational Geometry jocg.org

u v
a

wa

w

p

x

Figure 12: A polygon with a concave angle at u.

Removing the convexity assumption. Up to now, we have assumed that the angles at u
and at v are convex. As in [4], this assumption can be easily removed. Assume, e.g., that
the angle at u is concave, and let a be the first point on P ’s boundary (moving clockwise
from u) that lies on the x-axis (see Figure 12). Then, every point in the open portion of the
boundary between u and a is visible from u and is not visible from any other point on uv.
Moreover, for any vertex w in this portion of P ’s boundary, if w sees some point p in P above
the x-axis, then so does u. Indeed, since P is weakly-visible from uv, there exists a point
x ∈ uv that sees p. In other words, xp is contained in P , as well as uw and wp. Thus, the
quadrilateral uwpx does not contain points of ∂P in its interior, and since up is contained in
it, we conclude that u sees p. Therefore, we may assume that an optimal guarding set does
not include a vertex from this portion. Moreover, we may assume that the size of an optimal
guarding set is greater than some appropriate constant, since otherwise we can find such a
set in polynomial time. Now, let wa be the first vertex following a. We place a guard at u
and replace the portion of P ’s boundary between u and wa by the edge uwa. Notice that
every point in the removed region is visible from u. Similarly, if the angle at v is concave, we
define the point b and the vertex wb (by moving counterclockwise from v), place a guard at
v, and replace the portion of P ’s boundary between v and wb by the edge vwb. Finally, we
apply the algorithm of [4] to the resulting polygon, after adjusting its parameters so that
together with u and v we still get a (1 + ε/2)-approximation of an optimal guarding set for
∂P .

Theorem 11. Given a WV-polygon P with n vertices and ε > 0, one can find in O(nmax{2,O(1/ε2)})
time a subset G of the vertices of P , such that G guards P (boundary plus interior) and G is
of size at most (2 + ε)OPT, where OPT is the size of a minimum-cardinality such set.

Boundary guards. Let OPTB be the size of a minimum-cardinality set of points on P ’s
boundary (except the interior of the edge uv) that guards P (boundary plus interior), and
let OPTB

∂ be the size of a minimum-cardinality such set that guards P ’s boundary; clearly,
OPTB

∂ ≤ OPTB ≤ OPT. A PTAS for finding a set GB of points on (∂P \ uv) ∪ {u, v} that
guards ∂P is described in [4], that is, |GB| ≤ (1+ε)OPTB

∂ , for any ε > 0. Its running time is
O(nO(1/ε2)), and it is similar to the corresponding PTAS of Friedrichs et al. [14] for the case
of 1.5D-terrains. Given the set GB as input, we can apply our algorithm as is and obtain a
set G′ of boundary points of size at most |GB| such that GB ∪G′ guards P . Thus, we have
|GB|+ |G′| ≤ 2|GB| ≤ (2 + ε)OPTB.

http://jocg.org/

JoCG 21(1), 128–144, 2030 141

Journal of Computational Geometry jocg.org

Corollary 12. Given a WV-polygon P (w.r.t to edge uv) with n vertices and ε > 0, one can
find in O(nmax{2,O(1/ε2)}) time a set G of points on (∂P \ uv) ∪ {u, v}, such that G guards
P (boundary plus interior) and G is of size at most (2 + ε)OPTB, where OPTB is the size
of a minimum-cardinality such set.

4 Polygons weakly visible from a chord

A chord in a simple polygon P is a line segment whose endpoints are on the boundary of P
and whose interior is contained in the interior of P . In particular, any diagonal of P is a
chord in P .

In this section, we show that our method can be extended to the case where P is
weakly visible from a chord uv (in P), i.e., every point in P is visible from some point on
uv. More precisely, we show that given a set G of vertices that guards the boundary of
such a polygon P , one can find a set G′ of size at most 2|G| such that I = G ∪G′ guards
P (boundary plus interior). Thus, given a c-approximation algorithm for vertex guarding
the boundary of a polygon P weakly visible from a chord, we provide a 3c-approximation
algorithm for guarding P . The only known (though yet unpublished) such c-approximation
algorithm is that of Bhattacharya et al. [6] (for simple polygons), and there c = 18.

The chord uv slices P into two (sub)polygons, where each of them is a WV-polygon
w.r.t. the edge uv (see Figure 13). Thus, we would like to apply Algorithm 1 to each of these
polygons separately. We assume, w.l.o.g., that uv is horizontal, and refer to the (sub)polygons
above and below uv as P1 and P2, respectively.

p

Vis(p)

u v

P

Figure 13: The visibility polygon of a point p ∈ P .

The definitions of visibility polygons, pockets, and holes, are still appropriate for the
case of polygons weakly visible from a chord. However, we need to prove a few simple claims,
before applying Algorithm 1 to each of the two (sub)polygons separately. The proof of the
next claim is similar to that of Claim 1.

Claim 13. For any point p ∈ P , Vis(p) ∩ uv is connected.

So, by Claim 13, Vis(p) has at most two constructed edges that cross uv.

Claim 14. For any point p ∈ P , let xy be a constructed edge of Vis(p), such that x is below
y and xy is strictly above uv, then Cxy lies strictly above `x, i.e., every point in Cxy is above
`x.

http://jocg.org/

JoCG 21(1), 128–144, 2030 142

Journal of Computational Geometry jocg.org

Proof. As in the proof of Claim 3, we first observe that Cxy ∩ uv = ∅, since, otherwise,
uv ⊆ Cxy and p is not visible from uv.

Now, again as in the proof of Claim 3, let z be any point in Cxy and let z′ be a point
on uv such that zz′ ⊆ P . The segment zz′ has to cross xy, because z ∈ Cxy and z′ /∈ Cxy.
Since x is below y, this crossing point is above x, which in turn is above z′, so we get that z
is above x. We conclude that Cxy lies strictly above `x.

Claim 15. Let xy be a constructed edge of Vis(p), such that x is below y and xy crosses uv,
then `uv intersects ∂Cxy at a single point which is either u or v.

Proof. uv intersects ∂Cxy at a single point which is either u or v, since ∂Cxy ⊆ ∂P and uv
is a chord. Moreover, if `uv intersects ∂P at a point different than u, v, then this point is not
visible from uv.

As in the previous section, let E be the set of the constructed edges of the visibility
polygons of the vertices in G. We run Algorithm 1 on P1 and P2 separately, to find a set
of vertices G1 (of P1) such that G ∪ G1 guards P1 (boundary plus interior), and a set of
vertices G2 (of P2) such that G ∪G2 guards P2. We then set G′ = G1 ∪G2 and show that
|G′| ≤ 2|G|. Thus G ∪G′ is a set of vertices of size at most 3|G| that guards P .

When running the algorithm on P1, we ignore the existence of P2. That is, if an edge
xy ∈ E (associated with a vertex of G from either P1 or P2) crosses uv, then we only consider
its part that is contained in P1 (and the part of its associated pocket that is contained in P1).
Similarly, if a hole H lies on both sides of uv, we only consider its part that is contained in
P1. Moreover, in this case we get a hole in P1 that has an edge which is not a constructed
edge of a visibility polygon. But this does not cause a problem, since such holes must also
have upper edges, and furthermore, they must have an upper edge with endpoint on uv.

Notice that the role of an edge xy ∈ E that crosses uv switches from an upper edge
in P1 to a lower edge in P2, or vice versa. So, each such edge is an upper edge in either P1

or P2 but not in both, and therefore |G′| ≤ |G1| + |G2| ≤ 2|G|. Finally, notice that after
computing E, we do not use the set G in our algorithm and proofs; it only reappears as one
of the two sets (i.e., G and G′) whose union is the final guarding set.

Theorem 16. Given a polygon P with n vertices that is weakly visible from a chord, and a
set G of vertices of P (or a set G of points on ∂P) that guards ∂P , one can find in polynomial
time a set G′ of size at most 2|G| such that G ∪G′ guards P (boundary plus interior). If G
is a c-approximation for guarding ∂P , then G ∪G′ is a 3c-approximation for guarding the
entire polygon P .

References

[1] M. Abrahamsen, A. Adamaszek, and T. Miltzow. The art gallery problem is ∃ R-
complete. In Proc. 50th ACM SIGACT Sympos. on Theory of Computing, STOC, pages
65–73, 2018.

http://jocg.org/

JoCG 21(1), 128–144, 2030 143

Journal of Computational Geometry jocg.org

[2] A. Aggarwal. The art gallery theorem: its variations, applications and algorithmic
aspects. PhD thesis, Johns Hopkins Univ., 1984.

[3] S. Ashur, O. Filtser, and M. J. Katz. A constant-factor approximation algorithm for
vertex guarding a wv-polygon. In Proc. 18th Workshop on Approximation and Online
Algorithms, WAOA, 2020.

[4] S. Ashur, O. Filtser, M. J. Katz, and R. Saban. Terrain-like graphs: PTASs for guarding
weakly-visible polygons and terrains. Comput. Geom., 101:101832, 2022.

[5] D. Avis and G. T. Toussaint. An optimal algorithm for determining the visibility of a
polygon from an edge. IEEE Trans. Computers, 30(12):910–914, 1981.

[6] P. Bhattacharya, S. K. Ghosh, and S. Pal. Constant approximation algorithms for
guarding simple polygons using vertex guards. 2017. arXiv:1712.05492.

[7] P. Bhattacharya, S. K. Ghosh, and B. Roy. Approximability of guarding weak visibility
polygons. Discrete Applied Mathematics, 228:109–129, 2017.

[8] P. Bhattacharya, S. K. Ghosh, and B. Roy. Personal communication, 2018.

[9] É. Bonnet and T. Miltzow. An approximation algorithm for the art gallery problem.
In Proc. 33rd Internat. Sympos. on Computational Geometry, SoCG, pages 20:1–20:15,
2017.

[10] G. Das, P. J. Heffernan, and G. Narasimhan. Finding all weakly-visible chords of a
polygon in linear time. Nord. J. Comput., 1(4):433–457, 1994.

[11] A. Deshpande, T. Kim, E. D. Demaine, and S. E. Sarma. A pseudopolynomial time
O(log n)-approximation algorithm for art gallery problems. In Algorithms and Data
Structures, 10th Internat. Workshop, WADS, pages 163–174, 2007.

[12] A. Efrat and S. Har-Peled. Guarding galleries and terrains. Inf. Process. Lett., 100(6):238–
245, 2006.

[13] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for guarding
polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[14] S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. The continuous 1.5D terrain
guarding problem: Discretization, optimal solutions, and PTAS. JoCG, 7(1):256–284,
2016.

[15] S. K. Ghosh. Approximation algorithms for art gallery problems. In Proc. of the
Canadian Information Processing Society Congress, pages 429–434, 1987.

[16] S. K. Ghosh. Approximation algorithms for art gallery problems in polygons. Discrete
Applied Mathematics, 158(6):718–722, 2010.

[17] S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. Veni Madhavan. Character-
izing and recognizing weak visibility polygons. Comput. Geom., 3:213–233, 1993.

http://jocg.org/
http://arxiv.org/abs/1712.05492

JoCG 21(1), 128–144, 2030 144

Journal of Computational Geometry jocg.org

[18] M. Gibson, G. Kanade, E. Krohn, and K. Varadarajan. Guarding terrains via local
search. JoCG, 5(1):168–178, 2014.

[19] B. Joe and R. B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT,
27(4):458–473, 1987.

[20] M. J. Katz. A PTAS for vertex guarding weakly-visible polygons — an extended abstract.
2018. arXiv:1803.02160.

[21] Y. Ke. Detecting the weak visibility of a simple polygon and related problems. Technical
report, Johns Hopkins Univ., 1987.

[22] J. King and D. G. Kirkpatrick. Improved approximation for guarding simple galleries
from the perimeter. Discret. Comput. Geom., 46(2):252–269, 2011.

[23] David G. Kirkpatrick. An o(lg lg opt)-approximation algorithm for multi-guarding
galleries. Discret. Comput. Geom., 53(2):327–343, 2015.

[24] E. Krohn and B. J. Nilsson. Approximate guarding of monotone and rectilinear polygons.
Algorithmica, 66(3):564–594, 2013.

[25] D. T. Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing, 22(2):207–221, 1983.

[26] D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE
Trans. Information Theory, 32:276–282, 03 1986.

[27] N. H. Mustafa and S. Ray. PTAS for geometric hitting set problems via local search. In
Proc. 25th Sympos. on Computational Geometry, SoCG, pages 17–22, 2009.

[28] J. O’Rourke. Art gallery theorems and algorithms. Oxford Univ. Press, 1987.

[29] J. O’Rourke and K. J. Supowit. Some NP-hard polygon decomposition problems. IEEE
Trans. Information Theory, 29(2):181–189, 1983.

[30] J.-R. Sack and S. Suri. An optimal algorithm for detecting weak visibility of a polygon.
IEEE Trans. Computers, 39(10):1213–1219, 1990.

http://jocg.org/
http://arxiv.org/abs/1803.02160

	Introduction
	Structural analysis
	Visibility polygons
	Pockets
	Holes

	The Algorithm
	Polygons weakly visible from a chord

